[1] | Lindblad G 1976 Commun. Math. Phys. 48 119 | On the generators of quantum dynamical semigroups
[2] | Barreiro J T, Müller M, Schindler P, Nigg D, Monz T, Chwalla M, Hennrich M, Roos C F, Zoller P, and Blatt R 2011 Nature 470 486 | An open-system quantum simulator with trapped ions
[3] | Sweke R, Sinayskiy I, and Petruccione F 2014 Phys. Rev. A 90 022331 | Simulation of single-qubit open quantum systems
[4] | Fitzpatrick M, Sundaresan N M, Li A C Y, Koch J, and Houck A A 2017 Phys. Rev. X 7 011016 | Observation of a Dissipative Phase Transition in a One-Dimensional Circuit QED Lattice
[5] | Marino J and Diehl S 2016 Phys. Rev. B 94 085150 | Quantum dynamical field theory for nonequilibrium phase transitions in driven open systems
[6] | Preskill J 2018 Quantum 2 79 | Quantum Computing in the NISQ era and beyond
[7] | Gambetta J 2019 APS March Meeting 2019 4–8 March 2019, Boston, Massachusetts, Vol. 64, No. 2 |
[8] | Bharti K, Cervera-Lierta A, Kyaw T H, Haug T, Alperin-Lea S, Anand A, Degroote M, Heimonen H, Kottmann J S, Menke T et al. 2021 arXiv:2101.08448 [quant-ph] | Noisy intermediate-scale quantum (NISQ) algorithms
[9] | Cerezo M, Arrasmith A, Babbush R, Benjamin S C, Endo S, Fujii K, McClean J R, Mitarai K, Yuan X, Cincio L et al. 2020 arXiv:2012.09265 [quant-ph] | Variational Quantum Algorithms
[10] | Endo S, Cai Z, Benjamin S C, and Yuan X 2021 J. Phys. Soc. Jpn. 90 032001 | Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation
[11] | Kandala A, Mezzacapo A, Temme K, Takita M, Brink M, Chow J M, and Gambetta J M 2017 Nature 549 242 | Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets
[12] | Peruzzo A, McClean J, Shadbolt P, Yung M H, Zhou X Q, Love P J, Aspuru-Guzik A, and O'brien J L 2014 Nat. Commun. 5 4213 | A variational eigenvalue solver on a photonic quantum processor
[13] | O'Malley P J J, Babbush R, Kivlichan I D, Romero J, McClean J R, Barends R, Kelly J, Roushan P, Tranter A, Ding N, Campbell B, Chen Y, Chen Z, Chiaro B, Dunsworth A, Fowler A G, Jeffrey E, Lucero E, Megrant A, Mutus J Y, Neeley M, Neill C, Quintana C, Sank D, Vainsencher A, Wenner J, White T C, Coveney P V, Love P J, Neven H, Aspuru-Guzik A, and Martinis J M 2016 Phys. Rev. X 6 031007 | Scalable Quantum Simulation of Molecular Energies
[14] | Dumitrescu E F, McCaskey A J, Hagen G, Jansen G R, Morris T D, Papenbrock T, Pooser R C, Dean D J, and Lougovski P 2018 Phys. Rev. Lett. 120 210501 | Cloud Quantum Computing of an Atomic Nucleus
[15] | Santagati R, Wang J, Gentile A A, Paesani S, Wiebe N, Mcclean J R, Morley-Short S, Shadbolt P J, Bonneau D, and Silverstone J W 2018 Sci. Adv. 4 eaap9646 | Witnessing eigenstates for quantum simulation of Hamiltonian spectra
[16] | Yuan X, Endo S, Zhao Q, Li Y, and Benjamin S C 2019 Quantum 3 191 | Theory of variational quantum simulation
[17] | McArdle S, Jones T, Endo S, Li Y, Benjamin S, and Yuan X 2019 npj Quantum Inf. 5 75 | Variational ansatz-based quantum simulation of imaginary time evolution
[18] | Endo S, Sun J, Li Y, Benjamin S C, and Yuan X 2020 Phys. Rev. Lett. 125 010501 | Variational Quantum Simulation of General Processes
[19] | Mahdian M and Yeganeh H D 2020 J. Phys. A 53 415301 | Hybrid quantum variational algorithm for simulating open quantum systems with near-term devices
[20] | Li Y and Benjamin S C 2017 Phys. Rev. X 7 021050 | Efficient Variational Quantum Simulator Incorporating Active Error Minimization
[21] | Carleo G, Nomura Y, and Imada M 2018 Nat. Commun. 9 5322 | Constructing exact representations of quantum many-body systems with deep neural networks
[22] | Torlai G and Melko R G 2018 Phys. Rev. Lett. 120 240503 | Latent Space Purification via Neural Density Operators
[23] | Nagy A and Savona V 2019 Phys. Rev. Lett. 122 250501 | Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems
[24] | Hartmann M J and Carleo G 2019 Phys. Rev. Lett. 122 250502 | Neural-Network Approach to Dissipative Quantum Many-Body Dynamics
[25] | Vicentini F, Biella A, Regnault N, and Ciuti C 2019 Phys. Rev. Lett. 122 250503 | Variational Neural-Network Ansatz for Steady States in Open Quantum Systems
[26] | Yoshioka N and Hamazaki R 2019 Phys. Rev. B 99 214306 | Constructing neural stationary states for open quantum many-body systems
[27] | Yoshioka N, Nakagawa Y O, Mitarai K, and Fujii K 2020 Phys. Rev. Res. 2 043289 | Variational quantum algorithm for nonequilibrium steady states
[28] | Kliesch M, Barthel T, Gogolin C, Kastoryano M, and Eisert J 2011 Phys. Rev. Lett. 107 120501 | Dissipative Quantum Church-Turing Theorem
[29] | Nigro D 2019 J. Stat. Mech.: Theory Exp. 2019 043202 | On the uniqueness of the steady-state solution of the Lindblad–Gorini–Kossakowski–Sudarshan equation
[30] | Schirmer S G and Wang X 2010 Phys. Rev. A 81 062306 | Stabilizing open quantum systems by Markovian reservoir engineering
[31] | Hsiang J T and Hu B 2015 Ann. Phys. 362 139 | Nonequilibrium steady state in open quantum systems: Influence action, stochastic equation and power balance
[32] | Sim S, Johnson P D, and Aspuru-Guzik A 2019 Adv. Quantum Technol. 2 1900070 | Expressibility and Entangling Capability of Parameterized Quantum Circuits for Hybrid Quantum‐Classical Algorithms
[33] | Du Y, Hsieh M H, Liu T, and Tao D 2020 Phys. Rev. Res. 2 033125 | Expressive power of parametrized quantum circuits
[34] | Nielsen M A and Chuang I 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) | Quantum computation and quantum information
[35] | Singer S and Nelder J 2009 Scholarpedia 4 2928 | Nelder-Mead algorithm
[36] | Hempel C, Maier C, Romero J, McClean J, Monz T, Shen H, Jurcevic P, Lanyon B P, Love P, Babbush R, Aspuru-Guzik A, Blatt R, and Roos C F 2018 Phys. Rev. X 8 031022 | Quantum Chemistry Calculations on a Trapped-Ion Quantum Simulator
[37] | Virtanen P, Gommers R, Oliphant T E et al. 2020 Nat. Methods 17 261 | SciPy 1.0: fundamental algorithms for scientific computing in Python
[38] | Bittel L and Kliesch M 2021 arXiv:2101.07267 [quant-ph] | Training variational quantum algorithms is NP-hard – even for logarithmically many qubits and free fermionic systems
[39] | McClean J R, Boixo S, Smelyanskiy V N, Babbush R, and Neven H 2018 Nat. Commun. 9 1 | Structural absorption by barbule microstructures of super black bird of paradise feathers
[40] | Cerezo M, Sone A, Volkoff T, Cincio L, and Coles P J 2021 Nat. Commun. 12 12 | Robust and efficient hydrogenation of carbonyl compounds catalysed by mixed donor Mn(I) pincer complexes
[41] | Holmes Z, Sharma K, Cerezo M, and Coles P J 2021 arXiv:2101.02138 [quant-ph] | Connecting ansatz expressibility to gradient magnitudes and barren plateaus
[42] | Wang S, Fontana E, Cerezo M, Sharma K, Sone A, Cincio L, and Coles P J 2020 arXiv:2007.14384 [quant-ph] | Noise-Induced Barren Plateaus in Variational Quantum Algorithms
[43] | Kingma D P and Ba J 2014 arXiv:1412.6980 [cs.LG] | Adam: A Method for Stochastic Optimization
[44] | Grant E, Wossnig L, Ostaszewski M, and Benedetti M 2019 Quantum 3 214 | An initialization strategy for addressing barren plateaus in parametrized quantum circuits
[45] | Treinish M, Gambetta J, Nation P et al. 2021 Qiskit/qiskit: Qiskit 0.28.0 |
[46] | Johansson J R, Nation P D, and Nori F 2013 Comput. Phys. Commun. 184 1234 | QuTiP 2: A Python framework for the dynamics of open quantum systems