[1] | Rabi I I 1937 Phys. Rev. 51 652 | Space Quantization in a Gyrating Magnetic Field
[2] | Niemczyk T, Deppe F, Huebl H, Menzel E P, Hocke F, Schwarz M J, Garcia-Ripoll J J, Zueco D, Hümmer T, Solano E, Marx A, and Gross R 2010 Nat. Phys. 6 772 | Circuit quantum electrodynamics in the ultrastrong-coupling regime
[3] | Khitrova G, Gibbs H M, Kira M, Koch S W, and Scherer A 2006 Nat. Phys. 2 81 | Vacuum Rabi splitting in semiconductors
[4] | Leibfried D, Blatt R, Monroe C, and Wineland D 2003 Rev. Mod. Phys. 75 281 | Quantum dynamics of single trapped ions
[5] | Dicke R H 1954 Phys. Rev. 93 99 | Coherence in Spontaneous Radiation Processes
[6] | Flottat T, Hebert F, Rousseau V G, and Batrouni G G 2016 Eur. Phys. J. D 70 213 | Quantum Monte Carlo study of the Rabi-Hubbard model
[7] | Schiro M, Bordyuh M, Oztop B, and Tureci H E 2013 J. Phys. B 46 224021 | Quantum phase transition of light in the Rabi–Hubbard model
[8] | Lambert N, Emary C, and Brandes T 2004 Phys. Rev. Lett. 92 073602 | Entanglement and the Phase Transition in Single-Mode Superradiance
[9] | Cui S, Cao J, Fan H, and Amico L 2017 J. Phys. A 50 204001 | Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model
[10] | Lv X, Zhao C, and Zheng H 2017 J. Phys. A 50 074002 | Quantum dynamics of two-photon quantum Rabi model
[11] | Xie Q 2020 Commun. Theor. Phys. 72 065105 | Exact solution of the two-mode quantum Rabi model
[12] | Zhang Y, Mao B, Xu D, Zhang Y, You W, Liu M, and Luo H 2020 J. Phys. A 53 315302 | Quantum phase transitions and critical behaviors in the two-mode three-level quantum Rabi model
[13] | Braak D 2011 Phys. Rev. Lett. 107 100401 | Integrability of the Rabi Model
[14] | Judd B R 1979 J. Phys. C 12 1685 | Exact solutions to a class of Jahn-Teller systems
[15] | Xie Q, Cui S, Cao J, Amico L, and Fan H 2014 Phys. Rev. X 4 021046 | Anisotropic Rabi model
[16] | Skrypnyk T 2018 J. Phys. A 51 015204 | Modified n -level, n − 1-mode Tavis–Cummings model and algebraic Bethe ansatz
[17] | Bogoliubov N M, Bulloughz R K, and Timonen J 1996 J. Phys. A 29 6305 | Exact solution of generalized Tavis - Cummings models in quantum optics
[18] | Bogoliubov N M 2000 J. Res. Natl. Bur. Stand. Sec. B 100 2051 | Algebraic bethe anzatz and the tavis-cummings model
[19] | Rybin A, Kastelewiczz G, Timoneny J, and Bogoliubov N 1998 J. Phys. A 31 4705 | The su(1,1) Tavis-Cummings model
[20] | Amico L and Hikami K 2005 Eur. Phys. J. B 43 387 | Integrable spin-boson interaction in the Tavis-Cummings model from a generic boundary twist
[21] | Kundu A 2007 SIGMA 3 040 | q-Boson in Quantum Integrable Systems
[22] | Kundu A 2007 Theor. Math. Phys. 151 831 | Yang-Baxter algebra and generation of quantum integrable models
[23] | Amico L, Frahmb H, Osterlohb A, and Ribeiro G A P 2007 Nucl. Phys. B 787 283 | Integrable spin–boson models descending from rational six-vertex models
[24] | Dunning C, Isaac P S, Links J, and Zhao S 2011 Nucl. Phys. B 848 372 | BEC–BCS crossover in a ()-wave pairing Hamiltonian coupled to bosonic molecular pairs
[25] | Babelon O and Talalaev D 2007 J. Stat. Mech.: Theory Exp. 2007 P06013 | On the Bethe ansatz for the Jaynes–Cummings–Gaudin model
[26] | Skrypnyk T 2008 J. Phys. A 41 475202 | Generalized n -level Jaynes–Cummings and Dicke models, classical rational r -matrices and algebraic Bethe ansatz
[27] | Skrypnyk T 2010 J. Phys. A 43 205205 | Integrable modifications of Dicke and Jaynes–Cummings models, Bose–Hubbard dimers and classical r -matrices
[28] | Tschirhart H and Faribault A 2014 J. Phys. A 47 405204 | Algebraic Bethe ansätze and eigenvalue-based determinants for Dicke–Jaynes–Cummings–Gaudin quantum integrable models
[29] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 | Real Spectra in Non-Hermitian Hamiltonians Having Symmetry
[30] | Rotter I 2009 J. Phys. A 42 153001 | A non-Hermitian Hamilton operator and the physics of open quantum systems
[31] | El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11 | Non-Hermitian physics and PT symmetry
[32] | Heiss W 2012 J. Phys. A 45 444016 | The physics of exceptional points
[33] | Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[34] | Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801 | Topological Origin of Non-Hermitian Skin Effects
[35] | Zhang K, Yang Z, and Fang C 2020 Phys. Rev. Lett. 125 126402 | Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems
[36] | Longhi S 2019 Phys. Rev. Lett. 122 237601 | Topological Phase Transition in non-Hermitian Quasicrystals
[37] | Longhi S 2021 Phys. Rev. B 103 054203 | Phase transitions in a non-Hermitian Aubry-André-Harper model
[38] | Tzortzakakis A F, Makris K G, Szameit A, and Economou E N 2021 Phys. Rev. Res. 3 013208 | Transport and spectral features in non-Hermitian open systems