[1] | Karasu-Kalkanlı A, Karasu A, Sakovich A, Sakovich S, and Turhan R 2008 J. Math. Phys. 49 073516 | A new integrable generalization of the Korteweg–de Vries equation
[2] | Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355 | A Method for Finding N-Soliton Solutions of the K.d.V. Equation and K.d.V.-Like Equation
[3] | Caudrey P J, Dodd R K, and Gibbon J D 1976 Proc. R. Soc. London Ser. A 351 407 | A new hierarchy of Korteweg–de Vries equations
[4] | Dye J M and Parker A 2001 J. Math. Phys. 42 2567 | On bidirectional fifth-order nonlinear evolution equations, Lax pairs, and directionally dependent solitary waves
[5] | He J S, Cheng Y, and Römer R A 2006 J. High Energy Phys. 2006(03) 103 | Solving bi-directional soliton equations in the KP hierarchy by gauge transformation
[6] | Ma Y L and Geng X G 2012 Appl. Math. Comput. 218 6963 | Darboux and Bäcklund transformations of the bidirectional Sawada–Kotera equation
[7] | Lai X J and Cai X O 2010 Z. Naturforsch. A 65 658 | Adomian Decomposition Method for Approximating the Solutions of the Bidirectional Sawada-Kotera Equation
[8] | Yang Y Q and Chen Y 2011 Commun. Theor. Phys. 55 25 | Pseudopotentials, Lax Pairs and Bäcklund Transformations for Generalized Fifth-Order KdV Equation
[9] | Geng X G, Wu L H, and He G L 2013 J. Nonlinear Sci. 23 527 | Quasi-periodic Solutions of the Kaup–Kupershmidt Hierarchy
[10] | Han P and Lou S Y 1993 Chin. Phys. Lett. 10 257 | Abundant Symmetry Structure of the Kaup-Kupershmidt Hierarchies
[11] | Karasu-Kalkanlı A and Yu S S 2001 J. Phys. A 34 7355 | Bäcklund transformation and special solutions for the Drinfeld-Sokolov-Satsuma-Hirota system of coupled equations
[12] | Heris J M and Lakestani M 2014 J. At. Mol. Phys. 2014 840689 | Exact Solutions for the Integrable Sixth-Order Drinfeld-Sokolov-Satsuma-Hirota System by the Analytical Methods
[13] | Huang L L and Chen Y 2017 Appl. Math. Lett. 64 177 | Nonlocal symmetry and similarity reductions for the Drinfeld–Sokolov–Satsuma–Hirota system
[14] | Kupershmidt B A 2008 Phys. Lett. A 372 2634 | KdV6: An integrable system
[15] | Mohammad M, Mostafa E, and Anjan B 2015 Nonlinear Dyn. 80 387 | 1-Soliton solution of KdV6 equation
[16] | Zhao Z L, Chen Y, and Han B 2017 Optik 140 10 | On periodic wave solutions of the KdV6 equation via bilinear Bäcklund transformation
[17] | Geng X G and Xue B 2012 Appl. Math. Comput. 219 3504 |
[18] | Verhoeven C and Musette M 2003 J. Phys. A 36 L133 | Soliton solutions of two bidirectional sixth-order partial differential equations belonging to the KP hierarchy
[19] | Verhoeven C and Musette M 2001 J. Phys. A 34 L721 | Grammian N -soliton solutions of a coupled KdV system
[20] | Dye J M and Parker A 2002 J. Math. Phys. 43 4921 | A bidirectional Kaup–Kupershmidt equation and directionally dependent solitons
[21] | Verhoeven C 2004 J. Phys. A 37 10625 | Resonant triads for two bidirectional equations in 1 + 1 dimensions
[22] | Malomed B A 1991 Phys. Rev. A 44 6954 | Bound solitons in the nonlinear Schrödinger–Ginzburg-Landau equation
[23] | Malomed B A 1992 Phys. Rev. A 45 R8321 | Bound solitons in coupled nonlinear Schrödinger equations
[24] | Tang D Y, Man W S, Tam H Y, and Drummond P D 2001 Phys. Rev. A 64 033814 | Observation of bound states of solitons in a passively mode-locked fiber laser
[25] | Tsatourian V, Sergeyev S V, Mou C B, Rozhin A, Mikhailov V, Rabin B, Westbrook P S, and Turitsyn S K 2013 Sci. Rep. 3 3154 | Polarisation Dynamics of Vector Soliton Molecules in Mode Locked Fibre Laser
[26] | Peng J, Zhan L, Luo S, and Shen Q S 2013 IEEE Photon. Technol. Lett. 25 948 | Generation of Soliton Molecules in a Normal-Dispersion Fiber Laser
[27] | Wang P, Bao C Y, Fu B, Xiao X S, Grelu P, and Yang C X 2016 Opt. Lett. 41 2254 | Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution
[28] | Herink G, Kurtz F, Jalali B, Solli D R, and Ropers C 2017 Science 356 50 | Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules
[29] | Liu X M, Yao X K, and Cui Y D 2018 Phys. Rev. Lett. 121 023905 | Real-Time Observation of the Buildup of Soliton Molecules
[30] | Peng J, Boscolo S, Zhao Z, and Zeng H 2019 Sci. Adv. 5 eaax1110 | Breathing dissipative solitons in mode-locked fiber lasers
[31] | Łakomy K, Nath R, and Santos L 2012 Phys. Rev. A 85 033618 | Spontaneous crystallization and filamentation of solitons in dipolar condensates
[32] | Łakomy K, Nath R, and Santos L 2012 Phys. Rev. A 86 013610 | Soliton molecules in dipolar Bose-Einstein condensates
[33] | Marin F and Ezersky A B 2008 Eur. J. Mech. B 27 251 | Formation dynamics of sand bedforms under solitons and bound states of solitons in a wave flume used in resonant mode
[34] | Lou S Y 2019 arXiv:1909.03399 [nlin.SI] | Soliton molecules and asymmetric solitons in fluid systems via velocity resonance
[35] | Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) | Dark soliton molecules in nonlinear optics
[36] | Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501 | Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation
[37] | Yan Z W and Lou S Y 2020 Appl. Math. Lett. 104 106271 | Soliton molecules in Sharma–Tasso–Olver–Burgers equation
[38] | Cheng X P, Lou S Y, and Yang Y Q 2020 Results Phys. 18 103184 | The N-soliton molecule for the combined th-order Lax’s KdV equation
[39] | Jia M, Lin J, and Lou S Y 2020 Nonlinear Dyn. 100 3745 | Soliton and breather molecules in few-cycle-pulse optical model
[40] | Wang W, Yao R X, and Lou S Y 2020 Chin. Phys. Lett. 37 100501 | Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada-Kotera Equation: Few Cycle Solitons and Soliton Molecules
[41] | Ren B 2021 Commun. Theor. Phys. 73 035003 | Dynamics of a D’Alembert wave and a soliton molecule for an extended BLMP equation
[42] | Zhang Z, Yang S X, and Li B 2020 Appl. Math. Lett. 103 106168 | Soliton molecules and novel smooth positons for the complex modified KdV equation
[43] | Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551 | Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation