[1] | Trambly de Laissardière G T, Mayou D, and Magaud L 2010 Nano Lett. 10 804 | Localization of Dirac Electrons in Rotated Graphene Bilayers
[2] | Trambly de Laissardière G T, Mayou D, and Magaud L 2012 Phys. Rev. B 86 125413 | Numerical studies of confined states in rotated bilayers of graphene
[3] | Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 | Moire bands in twisted double-layer graphene
[4] | Rozhkov A V, Sboychakov A O, Rakhmanov A L, and Nori F 2016 Phys. Rep. 648 1 | Electronic properties of graphene-based bilayer systems
[5] | Lopes dos Santos J M B, Peres N M R, and Neto A H C 2007 Phys. Rev. Lett. 99 256802 | Graphene Bilayer with a Twist: Electronic Structure
[6] | Lopes dos Santos J M B, Peres N M R, and Neto A H C 2012 Phys. Rev. B 86 155449 | Continuum model of the twisted graphene bilayer
[7] | Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[8] | Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Ashoori Ray C, and Jarillo-Herrero P 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[9] | Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y, and Wang F 2020 Nature 579 56 | Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice
[10] | Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, and Pasupathy A N 2019 Nature 572 95 | Maximized electron interactions at the magic angle in twisted bilayer graphene
[11] | Tomarken S L, Cao Y, Demir A, Watanabe K, Taniguchi T, Jarillo-Herrero P, and Ashoori R C 2019 Phys. Rev. Lett. 123 046601 | Electronic Compressibility of Magic-Angle Graphene Superlattices
[12] | Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G et al. 2019 Nature 574 653 | Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene
[13] | Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2019 Nature 572 101 | Spectroscopic signatures of many-body correlations in magic-angle twisted bilayer graphene
[14] | Shen C, Chu Y, Wu Q, Li N, Wang S, Zhao Y, Tang J, Liu J, Tian J, Watanabe K, Taniguchi T, Yang R, Meng Z Y, Shi D, Yazyev O V, and Zhang G 2020 Nat. Phys. 16 520 | Correlated states in twisted double bilayer graphene
[15] | Nuckolls K P, Myungchul O, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2020 Nature 588 610 | Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
[16] | Pierce A T, Xie Y, Park J M, Khalaf E, Lee S H, Cao Y, Parker D E, Forrester P R, Chen S, Watanabe K, Taniguchi T, Vishwanath A, Jarillo-Herrero P, and Yacoby A 2021 arXiv:2101.04123 [cond-mat.mes-hall] | Unconventional sequence of correlated Chern insulators in magic-angle twisted bilayer graphene
[17] | Moriyama S, Morita Y, Komatsu K, Endo K, Iwasaki T, Nakaharai S, Noguchi Y, Wakayama Y, Watanabe E, Tsuya D, Watanabe K, and Taniguchi T 2019 arXiv:1901.09356 [cond-mat.supr-con] | Observation of superconductivity in bilayer graphene/hexagonal boron nitride superlattices
[18] | Rozen A, Park J M, Zondiner U, Cao Y, Rodan-Legrain D, Taniguchi T, Watanabe K, Oreg Y, Stern A, Berg E, Jarillo-Herrero P, and Ilani S 2020 arXiv:2009.01836 [cond-mat.mes-hall] | Entropic evidence for a Pomeranchuk effect in magic angle graphene
[19] | Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A, and Yazdani A 2020 arXiv:2008.07552 [cond-mat.mes-hall] | Spectroscopy of a Tunable Moiré System with a Correlated and Topological Flat Band
[20] | Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, and Zhang G 2021 Chin. Phys. Lett. 38 047301 | Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene
[21] | Po H C, Watanabe H, and Vishwanath A 2018 Phys. Rev. Lett. 121 126402 | Fragile Topology and Wannier Obstructions
[22] | Po H C, Zou L, Senthil T, and Vishwanath A 2019 Phys. Rev. B 99 195455 | Faithful tight-binding models and fragile topology of magic-angle bilayer graphene
[23] | Bultinck N, Chatterjee S, and Zaletel M P 2020 Phys. Rev. Lett. 124 166601 | Mechanism for Anomalous Hall Ferromagnetism in Twisted Bilayer Graphene
[24] | Po H C, Zou L, Vishwanath A, and Senthil T 2018 Phys. Rev. X 8 031089 | Origin of Mott Insulating Behavior and Superconductivity in Twisted Bilayer Graphene
[25] | Tarnopolsky G, Kruchkov A J, and Vishwanath A 2019 Phys. Rev. Lett. 122 106405 | Origin of Magic Angles in Twisted Bilayer Graphene
[26] | Yuan N F Q and Fu L 2018 Phys. Rev. B 98 045103 | Model for the metal-insulator transition in graphene superlattices and beyond
[27] | Kang J and Vafek O 2018 Phys. Rev. X 8 031088 | Symmetry, Maximally Localized Wannier States, and a Low-Energy Model for Twisted Bilayer Graphene Narrow Bands
[28] | Koshino M, Yuan N F Q, Koretsune T, Ochi M, Kuroki K, and Fu L 2018 Phys. Rev. X 8 031087 | Maximally Localized Wannier Orbitals and the Extended Hubbard Model for Twisted Bilayer Graphene
[29] | Roy B and Juričić V 2019 Phys. Rev. B 99 121407 | Unconventional superconductivity in nearly flat bands in twisted bilayer graphene
[30] | Zhang Y, Jiang K, Wang Z, and Zhang F 2020 Phys. Rev. B 102 035136 | Correlated insulating phases of twisted bilayer graphene at commensurate filling fractions: A Hartree-Fock study
[31] | Bultinck N, Khalaf E, Liu S, Chatterjee S, Vishwanath A, and Zaletel M P 2020 Phys. Rev. X 10 031034 | Ground State and Hidden Symmetry of Magic-Angle Graphene at Even Integer Filling
[32] | Hejazi K, Chen X, and Balents L 2021 Phys. Rev. Res. 3 013242 | Hybrid Wannier Chern bands in magic angle twisted bilayer graphene and the quantized anomalous Hall effect
[33] | Xie M and MacDonald A H 2020 Phys. Rev. Lett. 124 097601 | Nature of the Correlated Insulator States in Twisted Bilayer Graphene
[34] | Liu J, Liu J, and Dai X 2019 Phys. Rev. B 99 155415 | Pseudo Landau level representation of twisted bilayer graphene: Band topology and implications on the correlated insulating phase
[35] | Liu J and Dai X 2020 npj Comput. Mater. 6 1 | Machine learning enabled autonomous microstructural characterization in 3D samples
[36] | Liu J and Dai X 2021 Phys. Rev. B 103 035427 | Theories for the correlated insulating states and quantum anomalous Hall effect phenomena in twisted bilayer graphene
[37] | Cea T and Guinea F 2020 Phys. Rev. B 102 045107 | Band structure and insulating states driven by Coulomb interaction in twisted bilayer graphene
[38] | Liu S, Khalaf E, Lee J Y, and Vishwanath A 2021 Phys. Rev. Res. 3 013033 | Nematic topological semimetal and insulator in magic-angle bilayer graphene at charge neutrality
[39] | Carr S, Fang S, Zhu Z, and Kaxiras E 2019 Phys. Rev. Res. 1 013001 | Exact continuum model for low-energy electronic states of twisted bilayer graphene
[40] | Kwan Y H, Wagner G, Soejima T, Zaletel M P, Simon S H, Parameswaran S A, and Bultinck N 2021 arXiv:2105.05857 [cond-mat.str-el] | Kekulé spiral order at all nonzero integer fillings in twisted bilayer graphene
[41] | Chatterjee S, Ippoliti M, and Zaletel M P 2020 arXiv:2010.01144 [cond-mat.str-el] | Skyrmion Superconductivity: DMRG evidence for a topological route to superconductivity
[42] | Khalaf E, Chatterjee S, Bultinck N, Zaletel M P, and Vishwanath A 2021 Sci. Adv. 7 eabf5299 | Charged skyrmions and topological origin of superconductivity in magic-angle graphene
[43] | Kang J and Vafek O 2020 Phys. Rev. B 102 035161 | Non-Abelian Dirac node braiding and near-degeneracy of correlated phases at odd integer filling in magic-angle twisted bilayer graphene
[44] | Soejima T, Parker D E, Bultinck N, Hauschild J, and Zaletel M P 2020 Phys. Rev. B 102 205111 | Efficient simulation of moiré materials using the density matrix renormalization group
[45] | Huang Y, Hosur P, and Pal H K 2020 Phys. Rev. B 102 155429 | Quasi-flat-band physics in a two-leg ladder model and its relation to magic-angle twisted bilayer graphene
[46] | Xie F, Cowsik A, Song Z D, Lian B, Bernevig B A, and Regnault N 2021 Phys. Rev. B 103 205416 | Twisted bilayer graphene. VI. An exact diagonalization study at nonzero integer filling
[47] | Ochi M, Koshino M, and Kuroki K 2018 Phys. Rev. B 98 081102 | Possible correlated insulating states in magic-angle twisted bilayer graphene under strongly competing interactions
[48] | Dodaro J F, Kivelson S A, Schattner Y, Sun X Q, and Wang C 2018 Phys. Rev. B 98 075154 | Phases of a phenomenological model of twisted bilayer graphene
[49] | Potasz P, Xie M, and MacDonald A H 2021 arXiv:2102.02256 [cond-mat.str-el] | Exact Diagonalization for Magic-Angle Twisted Bilayer Graphene
[50] | Vafek O and Kang J 2020 Phys. Rev. Lett. 125 257602 | Renormalization Group Study of Hidden Symmetry in Twisted Bilayer Graphene with Coulomb Interactions
[51] | Kang J and Vafek O 2019 Phys. Rev. Lett. 122 246401 | Strong Coupling Phases of Partially Filled Twisted Bilayer Graphene Narrow Bands
[52] | Song Z D, Lian B, Regnault N, and Bernevig B A 2021 Phys. Rev. B 103 205412 | Twisted bilayer graphene. II. Stable symmetry anomaly
[53] | Bernevig B A, Song Z D, Regnault N, and Lian B 2021 Phys. Rev. B 103 205413 | Twisted bilayer graphene. III. Interacting Hamiltonian and exact symmetries
[54] | Lian B, Song Z D, Regnault N, Efetov D K, Yazdani A, and Bernevig B A 2021 Phys. Rev. B 103 205414 | Twisted bilayer graphene. IV. Exact insulator ground states and phase diagram
[55] | Bernevig B A, Lian B, Cowsik A, Xie F, Regnault N, and Song Z D 2021 Phys. Rev. B 103 205415 | Twisted bilayer graphene. V. Exact analytic many-body excitations in Coulomb Hamiltonians: Charge gap, Goldstone modes, and absence of Cooper pairing
[56] | Alavirad Y and Sau J 2020 Phys. Rev. B 102 235123 | Ferromagnetism and its stability from the one-magnon spectrum in twisted bilayer graphene
[57] | Hirsch J E 1985 Phys. Rev. B 31 4403 | Two-dimensional Hubbard model: Numerical simulation study
[58] | Xu X Y, Sun K, Schattner Y, Berg E, and Meng Z Y 2017 Phys. Rev. X 7 031058 | Non-Fermi Liquid at ( ) Ferromagnetic Quantum Critical Point
[59] | Liu Z H, Pan G, Xu X Y, Sun K, and Meng Z Y 2019 Proc. Natl. Acad. Sci. USA 116 16760 | Itinerant quantum critical point with fermion pockets and hotspots
[60] | Liao Y D, Meng Z Y, and Xu X Y 2019 Phys. Rev. Lett. 123 157601 | Valence Bond Orders at Charge Neutrality in a Possible Two-Orbital Extended Hubbard Model for Twisted Bilayer Graphene
[61] | Liao Y D, Kang J, Breiø C N, Xu X Y, Wu H Q, Andersen B M, Fernandes R M, and Meng Z Y 2021 Phys. Rev. X 11 011014 | Correlation-Induced Insulating Topological Phases at Charge Neutrality in Twisted Bilayer Graphene
[62] | Liao Y D, Xu X Y, Meng Z Y, and Kang J 2021 Chin. Phys. B 30 017305 | Correlated insulating phases in the twisted bilayer graphene*
[63] | Xu X Y, Law K T, and Lee P A 2018 Phys. Rev. B 98 121406 | Kekulé valence bond order in an extended Hubbard model on the honeycomb lattice with possible applications to twisted bilayer graphene
[64] | Huang T, Zhang L, and Ma T 2019 Sci. Bull. 64 310 | Antiferromagnetically ordered Mott insulator and superconductivity in twisted bilayer graphene: a quantum Monte Carlo study
[65] | Liu Z H, Xu X Y, Qi Y, Sun K, and Meng Z Y 2019 Phys. Rev. B 99 085114 | Elective-momentum ultrasize quantum Monte Carlo method
[66] | Wang Z, Zaletel M P, Mong R S K, and Assaad F F 2021 Phys. Rev. Lett. 126 045701 | Phases of the ( ) Dimensional SO(5) Nonlinear Sigma Model with Topological Term
[67] | Ippoliti M, Mong R S K, Assaad F F, and Zaletel M P 2018 Phys. Rev. B 98 235108 | Half-filled Landau levels: A continuum and sign-free regularization for three-dimensional quantum critical points
[68] | The symmetry properties of the form factor and the proofs of the sign structure of the fermion determinant, the QMC measurements and brief description of the stochastic analytic continuation, are presented in the Supplemental Material. |
[69] | Assaad F and Evertz H 2008 World-Line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons, in Computational Many-Particle Physics, ed Fehske H, Schneider R and A. Weiße (Berlin: Springer) pp 277–356 |
[70] | Xu X Y, Liu Z H, Pan G, Qi Y, Sun K, and Meng Z Y 2019 J. Phys.: Condens. Matter 31 463001 | Revealing fermionic quantum criticality from new Monte Carlo techniques
[71] | Lee J Y, Hofmann J, Khalaf E, Vishwanath A, and Berg E 2021 APS March Meeting S43 00013 |
[72] | Hofmann J S, Khalaf E, Vishwanath A, Berg E, and Lee J Y 2021 arXiv:2105.12112 [cond-mat.str-el] | Fermionic Monte Carlo study of a realistic model of twisted bilayer graphene
[73] | Sandvik A W 1998 Phys. Rev. B 57 10287 | Stochastic method for analytic continuation of quantum Monte Carlo data
[74] | Beach K 2004 arXiv:cond-mat/0403055 [cond-mat.str-el] | Identifying the maximum entropy method as a special limit of stochastic analytic continuation
[75] | Sandvik A W 2016 Phys. Rev. E 94 063308 | Constrained sampling method for analytic continuation
[76] | Syljuåsen O F 2008 Phys. Rev. B 78 174429 | Using the average spectrum method to extract dynamics from quantum Monte Carlo simulations
[77] | Shao H, Qin Y Q, Capponi S, Chesi S, Meng Z Y, and Sandvik A W 2017 Phys. Rev. X 7 041072 | Nearly Deconfined Spinon Excitations in the Square-Lattice Spin- Heisenberg Antiferromagnet
[78] | Sun G Y, Wang Y C, Fang C, Qi Y, Cheng M, and Meng Z Y 2018 Phys. Rev. Lett. 121 077201 | Dynamical Signature of Symmetry Fractionalization in Frustrated Magnets
[79] | Ma N, Sun G Y, You Y Z, Xu C, Vishwanath A, Sandvik A W, and Meng Z Y 2018 Phys. Rev. B 98 174421 | Dynamical signature of fractionalization at a deconfined quantum critical point
[80] | Huang C J, Deng Y, Wan Y, and Meng Z Y 2018 Phys. Rev. Lett. 120 167202 | Dynamics of Topological Excitations in a Model Quantum Spin Ice
[81] | Yan Z, Wang Y C, Ma N, Qi Y, and Meng Z Y 2021 npj Quantum Mater. 6 1 | The bulk-corner correspondence of time-reversal symmetric insulators
[82] | Li H, Liao Y D, Chen B B, Zeng X T, Sheng X L, Qi Y, Meng Z Y, and Li W 2020 Nat. Commun. 11 1111 | Kosterlitz-Thouless melting of magnetic order in the triangular quantum Ising material TmMgGaO4
[83] | Hu Z, Ma Z, Liao Y D, Li H, Ma C, Cui Y, Shangguan Y, Huang Z, Qi Y, Li W et al. 2020 Nat. Commun. 11 5631 | Evidence of the Berezinskii-Kosterlitz-Thouless phase in a frustrated magnet
[84] | Zhou C, Yan Z, Wu H Q, Sun K, Starykh O A, and Meng Z Y 2020 arXiv:2007.12715 [cond-mat.str-el] | Amplitude Mode in Quantum Magnets via Dimensional Crossover
[85] | Wang Y C, Yan Z, Wang C, Qi Y, and Meng Z Y 2021 Phys. Rev. B 103 014408 | Vestigial anyon condensation in kagome quantum spin liquids
[86] | Jiang W, Liu Y, Klein A, Wang Y, Sun K, Chubukov A V, and Meng Z Y 2021 arXiv:2105.03639 [cond-mat.str-el] | Pseudogap and superconductivity emerging from quantum magnetic fluctuations: a Monte Carlo study
[87] | Xu X Y, Klein A, Sun K, Chubukov A V, and Meng Z Y 2020 npj Quantum Mater. 5 65 | Identification of non-Fermi liquid fermionic self-energy from quantum Monte Carlo data
[88] | Wang W, Davis A, Pan G, Wang Y, and Meng Z Y 2021 Phys. Rev. B 103 195108 | Phase diagram of the spin- Yukawa–Sachdev-Ye-Kitaev model: Non-Fermi liquid, insulator, and superconductor
[89] | Pan G, Wang W, Davis A, Wang Y, and Meng Z Y 2021 Phys. Rev. Res. 3 013250 | Yukawa-SYK model and self-tuned quantum criticality
[90] | Chen C, Yuan T, Qi Y, and Meng Z Y 2021 Phys. Rev. B 103 165131 | Fermi arcs and pseudogap in a lattice model of a doped orthogonal metal