Thermal Stability of High Power 26650-Type Cylindrical Na-Ion Batteries
-
Abstract
As a new electrochemical power system, safety (especially thermal safety) of Na-ion batteries (NIBs) is the key towards large-scale industrialization and market application. Thus, research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure. Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied. The high power NIBs can achieve fast charge and discharge at 5–10 C rate and maintain 80% capacity after 4729 cycles at 2 C/2 C rate, where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity. The results of accelerating rate calorimeter and differential scanning calorimetry (ARC-DSC) test results show that NIBs have a higher initial decomposition temperature (≥110 ℃) and a lower maximum thermal runaway temperature (≤350 ℃) than those of Li-ion batteries (LIBs), exhibiting a favorable thermal stability. It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature, which is similar to LIBs. Finally, the whole temperature characteristics of the NIBs in the range of −60 ℃–1000 ℃ are summarized, which provide guidance for the safety design and applications of NIBs. -
-
References
[1] Pan H, Hu Y S, and Chen L 2013 Energy & Environ. Sci. 6 2338 doi: 10.1039/c3ee40847g[2] Meng Q, Lu Y, Ding F, Zhang Q, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 2608 doi: 10.1021/acsenergylett.9b01900[3] Jiang L, Lu Y, Wang Y, Liu L, Qi X, Zhao C, Chen L, and Hu Y S 2018 Chin. Phys. Lett. 35 048801 doi: 10.1088/0256-307X/35/4/048801[4] Zhang B, Camélia M, Christel L, Cathie V G, and Tarascon J M 2016 Adv. Energy Mater. 6 1501588 doi: 10.1002/aenm.201501588[5] Lei Y, Yan Z, Lai W, Chou S, Wang Y, Liu H, and Dou S 2020 Electrochem. Energy Rev. 3 766 doi: 10.1007/s41918-020-00079-y[6] Li Y, Lu Y, Adelhelm P, Titirici M M, and Hu Y S 2019 Chem. Soc. Rev. 48 4655 doi: 10.1039/C9CS00162J[7] Abraham K M 2020 ACS Energy Lett. 5 3544 doi: 10.1021/acsenergylett.0c02181[8] Chen Z, Xiong R, Lu J, and Li X 2018 Appl. Energy 213 375 doi: 10.1016/j.apenergy.2018.01.068[9] DP F, Scheel M, JB R, Tjaden B, Hunt I, and TJ M 2015 Nat. Commun. 6 6924 doi: 10.1038/ncomms7924[10] Feng X, Fang M, He X, Ouyang M, Lu L, Wang H, and Zhang M 2014 J. Power Sources 255 294 doi: 10.1016/j.jpowsour.2014.01.005[11] MacNeil D D, Larcher D D, and Dahn J R 2019 J. Electrochem. Soc. 146 3596 doi: 10.1149/1.1392520[12] Lei B, Zhao W, Ziebert C, Uhlmann N, Rohde M, and Seifert H 2017 Batteries 3 14 doi: 10.3390/batteries3020014[13] Zheng S, Wang L, Feng X, and He X 2018 J. Power Sources 378 527 doi: 10.1016/j.jpowsour.2017.12.050[14] Feng X, Zheng S, He X, Wang L, Wang Y, and Ren D 2018 Front. Energy Res. 6 126 doi: 10.3389/fenrg.2018.00126[15] Ren D, Liu X, Feng X, Lu L, Ouyang M, and Li J 2018 Appl. Energy 228 633 doi: 10.1016/j.apenergy.2018.06.126[16] Roth E P and Doughty D H 2004 J. Power Sources 128 308 doi: 10.1016/j.jpowsour.2003.09.068[17] Li Y, Yang Y, Lu Y, Zhou Q, Qi X, Meng Q, Rong X, Chen L, and Hu Y S 2020 ACS Energy Lett. 5 1156 doi: 10.1021/acsenergylett.0c00337[18] Feng X, Zhen S, Ren D, He X, Wang L, Cui H, Liu X, Jin C, Zhang F, Xu C, Hsu H, Gao S, Chen T, Li Y, Wang T, Wang H, Li M, and Ouyang M 2019 Appl. Energy 246 53 doi: 10.1016/j.apenergy.2019.04.009[19] Andersson A M, Edstrom K, Rao N, and Wendsjö Å 1999 J. Power Sources 81–82 286 doi: 10.1016/S0378-77539900202-5[20] Andersson A M, Edstrom K, and Thomas J O 1999 J. Power Sources 81–82 8 doi: 10.1016/S0378-77539900185-8[21] Lee H, W, and Wang Y 2004 J. Electrochem. Soc. 151 A542 doi: 10.1149/1.1647568[22] Sacken U, Nodwell E, Sundher A, and Dahn J 1995 J. Power Sources 54 240 doi: 10.1016/0378-77539402076-F[23] Yang H, Bang H, Amine K, and Prakash J 2005 J. Electrochem. Soc. 152 A73 doi: 10.1149/1.1836126[24] Liu L, Qi X, Yin S, Zhang Q, Liu X, Suo L, Li H, Chen L, and Hu Y S 2019 ACS Energy Lett. 4 1650 doi: 10.1021/acsenergylett.9b00857[25] Aurbach D, Zaban A, Ein-Eli Y, Weissman I, Chusid O, Markovsky B, Levi M, Levi E, Schechter A, and Granot E 1997 J. Power Sources 68 91 doi: 10.1016/S0378-77539702575-5[26] Doughty D and Roth E P 2012 Electrochem. Soc. Interface 21 37 doi: 10.1149/2.F03122if[27] Richard M and Dahn J R 1999 J. Electrochem. Soc. 146 2068 doi: 10.1149/1.1391893[28] Maleki H, Deng G, Anani A, and Howard J 1999 J. Electrochem. Soc. 146 3224 doi: 10.1149/1.1392458[29] Yamaki J, Baba Y, Katayama N, Takatsuji H, Egashira M, and Okada S 2003 J. Power Sources 119–121 789 doi: 10.1016/S0378-77530300254-4[30] Qiao R, Zhang M, Liu Y, Ren W, Lin Y, and Pan F 2016 Chin. Phys. Lett. 33 078201 doi: 10.1088/0256-307X/33/7/078201[31] Dahn J R, Fuller E W, Obrovac M, and Vonsacken U 1994 Solid State Ionics 69 265 doi: 10.1016/0167-27389490415-4[32] Arai H, Tsuda M, Saito K, Hayashi M, and Sakurai Y 2002 J. Electrochem. Soc. 149 A401 doi: 10.1149/1.1452114[33] Baba Y, Okada S, and Yamaki J 2002 Solid State Ionics 148 311 doi: 10.1016/S0167-27380200067-X[34] Ouyang C, Shi S, Wang Z, Li H, Huang X, and Chen L 2005 Chin. Phys. Lett. 22 489 doi: 10.1088/0256-307X/22/2/062[35] Li Y, Lu Y, Meng Q, Jensen A, Zhang Q, Zhang Q, Tong Y, Qi Y, Gu L, Titirici M M, and Hu Y S 2019 Adv. Energy Mater. 9 1902852 doi: 10.1002/aenm.201902852[36] Liu K, Liu Y, Lin D, Pei A, and Cui Y 2018 Sci. Adv. 4 eaas9820 doi: 10.1126/sciadv.aas9820[37] Larsson F and Mellander B E 2014 J. Electrochem. Soc. 161 A1611 doi: 10.1149/2.0311410jes[38] Xie Y, Xu G, Che H, Wang H, Yang K, Yang X G F, Yang R, Che Z, and Khalil A 2018 Chem. Mater. 30 4909 doi: 10.1021/acs.chemmater.8b00047[39] Chen R, Nolan A M, Lu J, Chen L, Huang X, and Li H 2020 Joule 4 812 doi: 10.1016/j.joule.2020.03.012[40] Liu X, Ren D, Hsu H, Feng X, GL X, Zhuang M G H, Lu L, Han X, Chu Z, Li J, He X, Amine K, and Ouyang M 2018 Joule 2 2047 doi: 10.1016/j.joule.2018.06.015[41] Zhang L, Ma Y, Cheng X, Cui Y, Guan T, Gao Y, Du C, Yin G, Lin F, and Nordlund D 2016 J. Power Sources 329 255 doi: 10.1016/j.jpowsour.2016.08.030[42] Eshetu G G, Grugeon S, Kim H, Jeong S, Wu L, Gachot G, Laruelle S, Armand M, and Passerini S 2016 ChemSusChem 9 462 doi: 10.1002/cssc.201501605[43] Ponrouch A, Marchante E, Courty M, Tarascon J M, and Palacín M R 2012 Energy & Environ. Sci. 5 8572 doi: 10.1039/c2ee22258b[44] Li Y, Lu Y, Chen L, and Hu Y S 2020 Chin. Phys. B 29 048201 doi: 10.1088/1674-1056/ab7906[45] Zhu X B and Wang L Z 2020 EcoMat 2 e12043 doi: 10.1002/eom2.12043[46] Lee Y, Lim H, Kim S O, Kim H S, Kim K J, Lee K Y, and Choi W 2018 J. Mater. Chem. A 6 20383 doi: 10.1039/C8TA07854H[47] Feng J, An Y, Ci L, and Xiong S 2015 J. Mater. Chem. A 3 14539 doi: 10.1039/C5TA03548A[48] Hu Y S, Komaba S, Forsyth M, Johnson C, and Rojo T 2019 Small Methods 3 1900184 doi: 10.1002/smtd.201900184 -
Related Articles
[1] HU Dong-Sheng, ZHANG Yan-Ling, YIN Xiao-Gang, ZHU Chen-Ping, ZHANG Yong-Mei. Resonant Tunneling States of a Pairing Ladder with Random Dimer Chains [J]. Chin. Phys. Lett., 2012, 29(2): 027101. doi: 10.1088/0256-307X/29/2/027101 [2] HAN Rui, LI Jia-Xing, YAO Jiang-Ming, JI Juan-Xia, WANG Jian-Song, HU Qiang. Effects of Pairing Correlations on Formation of Proton Halo in 9C [J]. Chin. Phys. Lett., 2010, 27(9): 092101. doi: 10.1088/0256-307X/27/9/092101 [3] TIAN Yuan, MA Zhong-Yu, Ring Peter. Relativistic Quasiparticle Random Phase Approximation with a Separable Pairing Force [J]. Chin. Phys. Lett., 2009, 26(5): 052103. doi: 10.1088/0256-307X/26/5/052103 [4] TIAN Yuan, MA Zhong-Yu. A Separable Pairing Force in Nuclear Matter [J]. Chin. Phys. Lett., 2006, 23(12): 3226-3229. [5] LIN Ming-Xi, QI Sheng-Wen, LIU Yu-Liang. Influence of Gauge Fluctuation on Electron Pairing Order Parameter and Correlation Functions of a Two-Dimensional System [J]. Chin. Phys. Lett., 2006, 23(11): 3076-3079. [6] LIU Su, SHEN Rui, ZHENG Zhi-Ming, XING Ding-Yu. Incompatibility of d-Wave Pairing and Ferromagnetism in a Uniform System [J]. Chin. Phys. Lett., 2003, 20(2): 284-286. [7] ZHANG Hu-Yong, SHEN Wen-Qing, REN Zhong-Zhou, MA Yu-Gang, CAI Xiang-Zhou, ZHONG Chen, WEI Yi-Bin, CHEN Jin-Gen, ZHOU Xing-Fei, MA Guo-Liang, WANG Kun. Isospin Effect of the Pairing Correlation in Al Isotopes [J]. Chin. Phys. Lett., 2003, 20(1): 46-48. [8] CHEN Yong-Jing, CHEN Yong-Shou, XU Fu-Xin. Pairing Field and Moments of Inertia of Superdeformed Nuclei [J]. Chin. Phys. Lett., 2002, 19(12): 1771-1774. [9] XIN Xiao-Bin, LEI Yi-An, LIU Shu-Xin, ZENG Jin-Yan. Influence of Quadrupole Pairing on the Variation of J(2) of the Superdeformed Band 194Hg(1) [J]. Chin. Phys. Lett., 2000, 17(2): 94-95. [10] LÜ Jing, ZHANG Li-yuan, FENG Xiao-bing. Effects of Pairing Correlations on the Korringa Relation in Doped Fullerenes [J]. Chin. Phys. Lett., 1996, 13(11): 859-862.