[1] | Hirsch A 2010 Nat. Mater. 9 868 | The era of carbon allotropes
[2] | Pan L S and Kania D R 1995 Diamond: Electronic Properties and Applications (Boston: Springer) |
[3] | Lin C N, Lu Y J, Yang X, Tian Y Z, Gao C J, Sun J L, Dong L, Zhong F, Hu W D, and Shan C X 2018 Adv. Opt. Mater. 6 1800068 | Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging
[4] | Chen Y C, Lu Y J, Lin C N, Tian Y Z, Gao C J, Dong L, and Shan C X 2018 J. Mater. Chem. C 6 5727 | Self-powered diamond/β-Ga 2 O 3 photodetectors for solar-blind imaging
[5] | Liu T, Yang X G, Li Z, Hu Y W, Lv C F, Zhao W B, Zang J H, and Shan C X 2020 Chin. Phys. B 29 108102 | Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
[6] | Zhang Z, Lin C, Yang X, Tian Y, Gao C, Li K, Zang J, Yang X, Dong L, and Shan C 2021 Carbon 173 427 | Solar-blind imaging based on 2-inch polycrystalline diamond photodetector linear array
[7] | Kroto H W, Health J R, O'Brien S C, Curl R F, and Smalley R E 1985 Nature 318 162 | C60: Buckminsterfullerene
[8] | Lijima S 1991 Nature 354 56 | Helical microtubules of graphitic carbon
[9] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[10] | Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, and Anderson H L 2019 Science 365 1299 | An sp-hybridized molecular carbon allotrope, cyclo[18]carbon
[11] | Mao W L, Mao H, Eng P J, Trainor T P, Newville M, Kao C, Heinz D L, Shu J, Meng Y, and Hemley R J 2003 Science 302 425 | Bonding Changes in Compressed Superhard Graphite
[12] | Wang Z, Zhao Y, Tait K, Liao X, Schiferl D, Zha C, Downs R T, Qian J, Zhu Y, and Shen T 2004 Proc. Natl. Acad. Sci. USA 101 13699 | A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes
[13] | Lin Y, Zhang L, Mao H, Chow P, Xiao Y, Baldini M, Shu J, and Mao W L 2011 Phys. Rev. Lett. 107 175504 | Amorphous Diamond: A High-Pressure Superhard Carbon Allotrope
[14] | Wang L, Liu B, Li H, Yang W, Ding Y, Sinogeikin S V, Meng Y, Liu Z, Zeng X C, and Mao W L 2012 Science 337 825 | Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks
[15] | Ke F, Chen Y, Yin K, Yan J, Zhang H, Liu Z, Tse J S, Wu J, Mao H, and Chen B 2019 Proc. Natl. Acad. Sci. USA 116 9186 | Large bandgap of pressurized trilayer graphene
[16] | Ke F, Zhang L, Chen Y, Yin K, Wang C, Tzeng Y K, Lin Y, Dong H, Liu Z, Tse J S, Mao W L, Wu J, and Chen B 2020 Nano Lett. 20 5916 | Synthesis of Atomically Thin Hexagonal Diamond with Compression
[17] | Wang Y, Yao M, Chen Y, Dong J, Yang X, Du M, Liu R, Liu H, Li Y, and Liu B 2018 Appl. Phys. Lett. 113 021901 | Graphdiyne under pressure: A Raman study
[18] | Du M, Yao M, Dong J, Ge P, Dong Q, Kováts P S, Chen S, Liu R, Liu B, Cui T, Sundqvist B, and Liu B 2018 Adv. Mater. 30 1706916 | New Ordered Structure of Amorphous Carbon Clusters Induced by Fullerene-Cubane Reactions
[19] | Shiell T B, de Tomas C, McCulloch D G, McKenzie D R, Basu A, Suarez-Martinez I, Marks N A, Boehler R, Haberl B, and Bradby J E 2019 Phys. Rev. B 99 024114 | In situ analysis of the structural transformation of glassy carbon under compression at room temperature
[20] | Dong J, Yao Z, Yao M, Li R, Hu K, Zhu L, Wang Y, Sun H, Sundqvist B, Yang K, and Liu B 2020 Phys. Rev. Lett. 124 065701 | Decompression-Induced Diamond Formation from Graphite Sheared under Pressure
[21] | Yang X, Lv C, Yao Z, Yao M, Qin J, Li X, Shi L, Du M, Liu B, and Shan C X 2020 Carbon 159 266 | Band-gap engineering and structure evolution of confined long linear carbon chains@double-walled carbon nanotubes under pressure
[22] | Yao M, Fan X, Zhang W, Bao Y, Liu R, Sundqvist B, and Liu B 2017 Appl. Phys. Lett. 111 101901 | Uniaxial-stress-driven transformation in cold compressed glassy carbon
[23] | Zeng Z, Sheng H, Yang L, Lou H, Tan L, Prakapenka V B, Greenberg E, and Zeng Q 2019 Phys. Rev. Mater. 3 033608 | Structural transition in cold-compressed glassy carbon
[24] | Zhang Y, Yao M, Du M, Yao Z, Wang Y, Dong J, Yang Z, Sundqvist B, Kováts P S, and Liu B 2020 J. Am. Chem. Soc. 142 7584 | Negative Volume Compressibility in Sc 3 N@C 80 –Cubane Cocrystal with Charge Transfer
[25] | Shang Y C, Shen F R, Hou X Y, Chen L Y, Hu K, Li X, Liu R, Tao Q, Zhu P W, Liu Z D, Yao M G, Zhou Q, Cui T, and Liu B B 2020 Chin. Phys. Lett. 37 080701 | Pressure Generation above 35GPa in a Walker-Type Large-Volume Press
[26] | Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 | Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
[27] | Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K, and Zou G 2009 Phys. Rev. Lett. 102 175506 | Superhard Monoclinic Polymorph of Carbon
[28] | Umemoto K, Wentzcovitch R M, Saito S, and Miyake T 2010 Phys. Rev. Lett. 104 125504 | Body-Centered Tetragonal : A Viable Carbon Allotrope
[29] | Wang J T, Chen C, and Kawazoe Y 2011 Phys. Rev. Lett. 106 075501 | Low-Temperature Phase Transformation from Graphite to Orthorhombic Carbon
[30] | Zhao Z, Xu B, Zhou X F, Wang L M, Wen B, He J, Liu Z, Wang H T, and Tian Y 2011 Phys. Rev. Lett. 107 215502 | Novel Superhard Carbon: C-Centered Orthorhombic
[31] | Amsler M, Flores-Livas J A, Lehtovaara L, Balima F, Ghasemi S A, Machon D, Pailhès S, Willand A, Caliste D, Botti S, San M A, Goedecker S, and Marques M A L 2012 Phys. Rev. Lett. 108 065501 | Crystal Structure of Cold Compressed Graphite
[32] | Niu H, Chen X Q, Wang S, Li D, Mao W L, and Li Y 2012 Phys. Rev. Lett. 108 135501 | Families of Superhard Crystalline Carbon Allotropes Constructed via Cold Compression of Graphite and Nanotubes
[33] | Wang J Q, Zhao C X, Niu C Y, Sun Q, and Jia Y 2016 J. Phys.: Condens. Matter 28 475402 | C 20 − T carbon: a novel superhard sp 3 carbon allotrope with large cavities
[34] | Li Z Z, Lian C S, Xu J, Xu L F, Wang J T, and Chen C 2015 Phys. Rev. B 91 214106 | Computational prediction of body-centered cubic carbon in an all- six-member ring configuration
[35] | Li Z Z, Wang J T, Mizuseki H, and Chen C 2018 Phys. Rev. B 98 094107 | Computational discovery of a new rhombohedral diamond phase
[36] | He C, Zhang C X, Xiao H, Meng L, and Zhong J X 2017 Carbon 112 91 | New candidate for the simple cubic carbon sample shock-synthesized by compression of the mixture of carbon black and tetracyanoethylene
[37] | Yang X, Lv C, Liu S, Zang J, Qin J, Du M, Yang D, Li X, Liu B, and Shan C X 2020 Carbon 156 309 | Orthorhombic C14 carbon: A novel superhard sp3 carbon allotrope
[38] | Sheng X L, Yan Q B, Ye F, Zheng Q R, and Su G 2011 Phys. Rev. Lett. 106 155703 | T-Carbon: A Novel Carbon Allotrope
[39] | Yang X, Yao M, Wu X, Liu S, Chen S, Yang K, Liu R, Cui T, Sundqvist B, and Liu B 2017 Phys. Rev. Lett. 118 245701 | Novel Superhard Carbon Allotrope from Cold-Compressed Peapods
[40] | He C, Shi X, Clark S J, Li J, Pickard C J, Ouyang T, Zhang C, Tang C, and Zhong J 2018 Phys. Rev. Lett. 121 175701 | Complex Low Energy Tetrahedral Polymorphs of Group IV Elements from First Principles
[41] | Hoffmann R, Kabanov A A, Golov A A, and Proserpio D M 2016 Angew. Chem. Int. Ed. 55 10962 | Homo Citans and Carbon Allotropes: For an Ethics of Citation
[42] | Wang Y, Lv J, Zhu L, and Ma Y 2010 Phys. Rev. B 82 094116 | Crystal structure prediction via particle-swarm optimization
[43] | Wang Y, Lv J, Zhu L, and Ma Y 2012 Comput. Phys. Commun. 183 2063 | CALYPSO: A method for crystal structure prediction
[44] | Zhang S, He J, Zhao Z, Yu D, and Tian Y 2019 Chin. Phys. B 28 106104 | Discovery of superhard materials via CALYPSO methodology
[45] | Wu X, Shi X, Yao M, Liu S, Yang X, Zhu L, Cui T, and Liu B 2017 Carbon 123 311 | Superhard three-dimensional carbon with metallic conductivity
[46] | Ma Y M 2019 Chin. Phys. Lett. 36 090101 | Theoretical Proposal for a Planar Single-Layer Carbon That Shows a Potential in Superconductivity
[47] | Luo K, Liu B, Sun L, Zhao Z, and Tian Y 2021 Chin. Phys. Lett. 38 028102 | Design of a Class of New sp 2 – sp 3 Carbons Constructed by Graphite and Diamond Building Blocks
[48] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[49] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[50] | Krukau A V, Vydrov O A, Izmaylov A F, and Scuseria G E 2006 J. Chem. Phys. 125 224106 | Influence of the exchange screening parameter on the performance of screened hybrid functionals
[51] | Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[52] | Hill R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[53] | Chen X Q, Niu H, Li D, and Li Y 2011 Intermetallics 19 1275 | Modeling hardness of polycrystalline materials and bulk metallic glasses
[54] | Wang J T, Weng H, Nie S, Fang Z, Kawazoe Y, and Chen C 2016 Phys. Rev. Lett. 116 195501 | Body-Centered Orthorhombic : A Novel Topological Node-Line Semimetal
[55] | Wang J T, Chen C, Wang E, and Kawazoe Y 2015 Sci. Rep. 4 4339 | A New Carbon Allotrope with Six-Fold Helical Chains in all-sp2 Bonding Networks
[56] | Occelli F, Loubeyre P, and LeToullec R 2003 Nat. Mater. 2 151 | Properties of diamond under hydrostatic pressures up to 140 GPa
[57] | Li Z, Gao F, and Xu Z 2012 Phys. Rev. B 85 144115 | Strength, hardness, and lattice vibrations of -carbon and -carbon: First-principles calculations
[58] | Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X, and Meng J 2007 Phys. Rev. B 76 054115 | Crystal structures and elastic properties of superhard and from first principles
[59] | Pantea D, Brochu S, Thiboutot S, Ampleman G, and Scholz G 2006 Chemosphere 65 821 | A morphological investigation of soot produced by the detonation of munitions