[1] | Lee D, Choe Y J, Lee M, Jeong D H, and Paik S R 2011 Langmuir 27 12782 | Protein-Based SERS Technology Monitoring the Chemical Reactivity on an α-Synuclein-Mediated Two-Dimensional Array of Gold Nanoparticles
[2] | Ryu H J, Shin H, Oh S, Joo J H, Choi Y, and Lee J S 2020 ACS Appl. Mater. & Interfaces 12 2842 | Wrapping AgCl Nanostructures with Trimetallic Nanomeshes for Plasmon-Enhanced Catalysis and in Situ SERS Monitoring of Chemical Reactions
[3] | Alvarez-Puebla R A, dos Santos, Jr David S, and Aroca R F 2007 Analyst 132 1210 | SERS detection of environmental pollutants in humic acid–gold nanoparticle composite materials
[4] | Pearson B, Mills A, Tucker M, Gao S, McLandsborough L, and He L 2018 Food Microbiol. 72 89 | Rationalizing and advancing the 3-MPBA SERS sandwich assay for rapid detection of bacteria in environmental and food matrices
[5] | Kneipp J, Kneipp H, and Kneipp K 2008 Chem. Soc. Rev. 37 1052 | SERS—a single-molecule and nanoscale tool for bioanalytics
[6] | Wang X, Shi W, She G, and Mu L 2012 Phys. Chem. Chem. Phys. 14 5891 | Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures
[7] | Philip D, Gopchandran K G, Unni C, and Nissamudeen K M 2008 Spectrochim. Acta Part A 70 780 | Synthesis, characterization and SERS activity of Au–Ag nanorods
[8] | Zhang A Q, Wang Q L, Gao Y, Cheng S H, and Li H D 2020 Chin. Phys. Lett. 37 068102 | Gold-Nanoparticles/Boron-Doped-Diamond Composites as Surface-Enhanced Raman Scattering Substrates
[9] | Ye X, Shen J, Tao X, Ye G, and Yang B 2021 Chin. Phys. Lett. 38 038102 | Au Films Composed of Nanoparticles Fabricated on Liquid Surfaces for SERS
[10] | Zhu C, Meng G, Huang Q, Zhang Z, Xu Q, Liu G, Huang Z, and Chu Z 2011 Chem. Commun. 47 2709 | Ag nanosheet-assembled micro-hemispheres as effective SERS substrates
[11] | Zhong Y T, Cheng Z Q, Ma L, Wang J H, Hao Z H, and Wang Q Q 2014 Chin. Phys. Lett. 31 047302 | Surface Plasmon Resonance and Raman Scattering Activity of the Au/Ag x O/Ag Multilayer Film
[12] | Bozzini B, Mele C, D'Urzo L, and Romanello V 2006 J. Appl. Electrochem. 36 973 | An electrochemical and in situ SERS study of Cu electrodeposition from acidic sulphate solutions in the presence of 3-diethylamino-7-(4-dimethylaminophenylazo)-5-phenylphenazinium chloride (Janus Green B)
[13] | Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, and Liu Z 2010 Nano Lett. 10 553 | Can Graphene be used as a Substrate for Raman Enhancement?
[14] | Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, and Dresselhaus M S 2014 Nano Lett. 14 3033 | Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS 2
[15] | Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, and Lombardi J R 2016 ACS Photon. 3 1164 | Ultrahigh Raman Enhancement on Monolayer MoS 2
[16] | Zhang R, Drysdale D, Koutsos V, and Cheung R J 2017 Adv. Funct. Mater. 27 1702455 | Controlled Layer Thinning and p-Type Doping of WSe 2 by Vapor XeF 2
[17] | Feng S, Dos S M C, Carvalho B R, Lv R, Li Q, Fujisawa K, Elias A L, Lei Y, Perea-Lopez N, and Endo M J 2016 Sci. Adv. 2 e1600322 | Highly narrowband perovskite single-crystal photodetectors enabled by surface-charge recombination
[18] | Ying Y, Peng M, Zhang Y M, Han J C, Zhang X H et al. 2017 Adv. Funct. Mater. 27 1606694 | Significantly Increased Raman Enhancement on MoX 2 (X = S, Se) Monolayers upon Phase Transition
[19] | Wang P, Xia M, Liang O, Sun K, Cipriano A F, Schroeder T, Liu H, and Xie Y H 2015 Anal. Chem. 87 10255 | Label-Free SERS Selective Detection of Dopamine and Serotonin Using Graphene-Au Nanopyramid Heterostructure
[20] | Tan Y, Ma L, Gao Z, Chen M, and Chen F 2017 Nano Lett. 17 2621 | Two-Dimensional Heterostructure as a Platform for Surface-Enhanced Raman Scattering
[21] | Zhang L S, Fang Y, and Wang P J 2012 Chin. Phys. Lett. 29 114210 | Surface Enhanced Raman Scattering Characterization of the ZnO Films Modified with Silver Quantum Dot
[22] | Yao J, Quan Y, Gao R, Li J, Chen L, Liu Y, Lang J, Shen H, Wang Y, Yang J, and Gao M 2019 Langmuir 35 8921 | Improved Charge Transfer and Hot Spots by Doping and Modulating the Semiconductor Structure: A High Sensitivity and Renewability Surface-Enhanced Raman Spectroscopy Substrate
[23] | Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan P M, Yakobson B I, and Idrobo J C 2013 Nano Lett. 13 2615 | Intrinsic Structural Defects in Monolayer Molybdenum Disulfide
[24] | Leiter R, Li Y, and Kaiser U 2020 Nanotechnology 31 495704 | In-situ formation and evolution of atomic defects in monolayer WSe 2 under electron irradiation
[25] | Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U, and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 035503 | Two-Dimensional Transition Metal Dichalcogenides under Electron Irradiation: Defect Production and Doping
[26] | Chen J, Zhu J, Wang Q, Wan J, and Liu R 2020 Small 16 2001428 | Homogeneous 2D MoTe 2 CMOS Inverters and p–n Junctions Formed by Laser‐Irradiation‐Induced p‐Type Doping
[27] | Tomašević-Ilić T, Jovanović Ð, Popov I, Fandan R, Pedrós J, Spasenović M, and Gajić R 2018 Appl. Surf. Sci. 458 446 | Reducing sheet resistance of self-assembled transparent graphene films by defect patching and doping with UV/ozone treatment
[28] | Kong X, Xu Y, Cui Z, Li Z, Liang Y, Gao Z, Zhu S, and Yang X 2018 Appl. Catal. B: Environ. 230 11 | Defect enhances photocatalytic activity of ultrathin TiO2 (B) nanosheets for hydrogen production by plasma engraving method
[29] | Zhu J, Wang Z, Yu H, Li N, Zhang J, Meng J, Liao M, Zhao J, Lu X, Du L, Yang R, Shi D, Jiang Y, and Zhang G 2017 J. Am. Chem. Soc. 139 10216 | Argon Plasma Induced Phase Transition in Monolayer MoS 2
[30] | Zhang L, Feng S, Xiao S, Shen G, Zhang X, Nan H, Gu X, and Ostrikov K 2018 Appl. Surf. Sci. 441 639 | Layer-controllable graphene by plasma thinning and post-annealing
[31] | Sun L, Hu H, Zhan D, Yan J, Liu L, Teguh J S, Yeow E K, Lee P S, and Shen Z 2014 Small 10 1090 | Plasma Modified MoS 2 Nanoflakes for Surface Enhanced Raman Scattering
[32] | Ouyang B, Zhang Y, Xia X, Rawat R S, and Fan H J 2018 Mater. Today Nano 3 28 | A brief review on plasma for synthesis and processing of electrode materials
[33] | Ctibor P, Štengl V, Píš I, Zahoranová T, and Nehasil V 2012 Ceram. Int. 38 3453 | Plasma sprayed TiO2: The influence of power of an electric supply on relations among stoichiometry, surface state and photocatalytic decomposition of acetone
[34] | Ruppert C, Aslan O B, and Heinz T F 2014 Nano Lett. 14 6231 | Optical Properties and Band Gap of Single- and Few-Layer MoTe 2 Crystals
[35] | Chen B, Sahin H, Suslu A, Ding L, Bertoni M I, Peeters F M, and Tongay S 2015 ACS Nano 9 5326 | Environmental Changes in MoTe 2 Excitonic Dynamics by Defects-Activated Molecular Interaction
[36] | Islam M R, Kang N, Bhanu U, Paudel H P, Erementchouk M, Tetard L, Leuenberger M N, and Khondaker S I 2014 Nanoscale 6 10033 | Tuning the electrical property via defect engineering of single layer MoS 2 by oxygen plasma
[37] | Liu H, Han N, and Zhao J 2015 RSC Adv. 5 17572 | Atomistic insight into the oxidation of monolayer transition metal dichalcogenides: from structures to electronic properties
[38] | Zheng X, Wei Y, Deng C, Huang H, Yu Y, Wang G, Peng G, Zhu Z, Zhang Y, Jiang T, Qin S, Zhang R, and Zhang X 2018 ACS Appl. Mater. & Interfaces 10 30045 | Controlled Layer-by-Layer Oxidation of MoTe 2 via O 3 Exposure
[39] | Qu D, Liu X, Huang M, Lee C, Ahmed F, Kim H, Ruoff R S, Hone J, and Yoo W J 2017 Adv. Mater. 29 1606433 | Carrier-Type Modulation and Mobility Improvement of Thin MoTe 2
[40] | Zuo P, Jiang L, Li X, Ran P, Li B, Song A, Tian M, Ma T, Guo B, Qu L, and Lu Y 2019 Nanoscale 11 485 | Enhancing charge transfer with foreign molecules through femtosecond laser induced MoS 2 defect sites for photoluminescence control and SERS enhancement
[41] | Tao L, Chen K, Chen Z, Cong C, Qiu C, Chen J, Wang X, Chen H, Yu T, Xie W, Deng S, and Xu J B 2018 J. Am. Chem. Soc. 140 8696 | 1T′ Transition Metal Telluride Atomic Layers for Plasmon-Free SERS at Femtomolar Levels
[42] | Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, and Zhao Z 2017 Nat. Commun. 8 1993 | Semiconductor SERS enhancement enabled by oxygen incorporation
[43] | Wang X, Shi W, Jin Z, Huang W, Lin J, Ma G, Li S, and Guo L 2017 Angew. Chem. Int. Ed. Engl. 56 9851 | Remarkable SERS Activity Observed from Amorphous ZnO Nanocages
[44] | Lin J, Shang Y, Li X, Yu J, Wang X, and Guo L 2017 Adv. Mater. 29 1604797 | Ultrasensitive SERS Detection by Defect Engineering on Single Cu 2 O Superstructure Particle
[45] | Cong S, Yuan Y, Chen Z, Hou J, Yang M, Su Y, Zhang Y, Li L, Li Q, Geng F, and Zhao Z 2015 Nat. Commun. 6 7800 | Noble metal-comparable SERS enhancement from semiconducting metal oxides by making oxygen vacancies
[46] | Li C, Yan X, Song X, Bao W, Ding S, Zhang D W, and Zhou P 2017 Nanotechnology 28 415201 | WSe 2 /MoS 2 and MoTe 2 /SnSe 2 van der Waals heterostructure transistors with different band alignment