[1] | Gong Z, Ashida Y, Kawabata K, Takasan K, Higashikawa S, and Ueda M 2018 Phys. Rev. X 8 031079 | Topological Phases of Non-Hermitian Systems
[2] | Song F, Yao S Y, and Wang Z 2019 Phys. Rev. Lett. 123 246801 | Non-Hermitian Topological Invariants in Real Space
[3] | Esaki K, Sato M, Hasebe K, and Kohmoto M 2011 Phys. Rev. B 84 205128 | Edge states and topological phases in non-Hermitian systems
[4] | Lieu S 2018 Phys. Rev. B 97 045106 | Topological phases in the non-Hermitian Su-Schrieffer-Heeger model
[5] | Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press) |
[6] | Xie D, Gou W, Xiao T et al. 2019 npj Quantum Inf. 5 55 | Topological characterizations of an extended Su–Schrieffer–Heeger model
[7] | Dirac 1953 Physica 19 1 | The knock-on electrons produced by mesons in lead
[8] | Berry M V 1984 Proc. R. Soc. London. 392 45 |
[9] | Heiss W D 2004 J. Phys. A 37 2455 | Exceptional points of non-Hermitian operators
[10] | Xu Y, Wang S T, and Duan L M 2017 Phys. Rev. Lett. 118 045701 | Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas
[11] | Deng D L, Li X P, and Das S 2017 Phys. Rev. B 96 195145 | Machine learning topological states
[12] | Narayan B and Narayan A 2021 Phys. Rev. B 103 035413 | Machine learning non-Hermitian topological phases
[13] | Juan C and Roger G M 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[14] | Ohtsuki T and Tomi O 2016 J. Phys. Soc. Jpn. 85 123706 | Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
[15] | Arai S, Ohzeki M, and Tanaka K 2018 J. Phys. Soc. Jpn. 87 033001 | Deep Neural Network Detects Quantum Phase Transition
[16] | Broecker P, Carrasquilla J, Melko R G et al. 2017 Sci. Rep. 7 8823 | Machine learning quantum phases of matter beyond the fermion sign problem
[17] | Zhang Y, Paul G, and Kim E A 2020 Phys. Rev. Res. 2 023283 | Interpreting machine learning of topological quantum phase transitions
[18] | Wang C and Zhai H 2017 Phys. Rev. B 96 144432 | Machine learning of frustrated classical spin models. I. Principal component analysis
[19] | Gao J and Qiao L F 2018 Phys. Rev. Lett. 120 240501 | Experimental Machine Learning of Quantum States
[20] | Zhang P F, Shen H T, and Zhai H 2018 Phys. Rev. Lett. 120 066401 | Machine Learning Topological Invariants with Neural Networks
[21] | Sun N, Yi J M, Zhang P F, Shen H T, and Zhai H 2018 Phys. Rev. B 98 085402 | Deep learning topological invariants of band insulators
[22] | Ghatak A and Das T 2019 J. Phys.: Condens. Matter 31 263001 | New topological invariants in non-Hermitian systems
[23] | Chiu C K and Ryu S 2016 Rev. Mod. Phys. 88 035005 | Classification of topological quantum matter with symmetries
[24] | Yin C H, Jiang H, Li L H, Rong L, and Chen S 2018 Phys. Rev. A 97 052115 | Geometrical meaning of winding number and its characterization of topological phases in one-dimensional chiral non-Hermitian systems
[25] | Flore K K, Elisabet E, Jan C B, and Emil J B 2018 Phys. Rev. Lett. 121 026808 | Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems
[26] | Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[27] | Noriega L 2005 School of Computing, Staffordshire University (Multilayer Perceptron Tutorial) |
[28] | LeCun Y and Boser B 1989 Neural Comput. 1 541 | Backpropagation Applied to Handwritten Zip Code Recognition
[29] | Ian G, Yoshua B, and Aaron C 2016 Deep Learning (Cambridge, USA: The MIT Press) |
[30] | Xavier G and Yoshua B 2010 JMLR Workshop and Conference Proceedings 9 249 |
[31] | Ketkar N 2017 Deep Learning with Python (Apress, Berkeley, USA: Manning Publications) p 97 |
[32] | Polyak B T 1964 USSR Comput. Math. Math. Phys. 4 1 | Some methods of speeding up the convergence of iteration methods
[33] | Niu Q 1999 Neural Networks 12 145 | On the momentum term in gradient descent learning algorithms
[34] | Bottou L 2012 Stochastic Gradient Descent Tricks (Berlin: Springer) p 421 |
[35] | Stehman S V 1997 Remote Sens. Environ. 62 77 | Selecting and interpreting measures of thematic classification accuracy
[36] | Deng X Y, Liu Q, Deng Y, and Mahadevand S 2016 Inf. Sci. 340 250 | An improved method to construct basic probability assignment based on the confusion matrix for classification problem
[37] | Kazuki Y and Shuichi M 2019 Phys. Rev. Lett. 123 066404 | Non-Bloch Band Theory of Non-Hermitian Systems
[38] | Yu L W and Deng D L 2021 Phys. Rev. Lett. 126 240402 | Unsupervised Learning of Non-Hermitian Topological Phases
[39] | Zhang L F, Tang L Z, Huang Z H, Zhang G Q, Huang W, and Zhang D W 2021 Phys. Rev. A 103 012419 | Machine learning topological invariants of non-Hermitian systems