[1] | Goodenough J B and Kim Y 2010 Chem. Mater. 22 587 | Challenges for Rechargeable Li Batteries
[2] | Li H, Wang Z, Chen L, and Huang X 2009 Adv. Mater. 21 4593 | Research on Advanced Materials for Li-ion Batteries
[3] | Liu Q, Su X, Lei D, Qin Y, Wen J, Guo F, Wu Y A, Rong Y, Kou R, Xiao X, Aguesse F, Bareño J, Ren Y, Lu W, and Li Y 2018 Nat. Energy 3 936 | Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping
[4] | Zhang J N, Li Q, Ouyang C, Yu X, Ge M, Huang X, Hu E, Ma C, Li S, Xiao R, Yang W, Chu Y, Liu Y, Yu H, Yang X Q, Huang X, Chen L, and Li H 2019 Nat. Energy 4 594 | Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V
[5] | Wang Y, Zhang Q, Xue Z C, Yang L, Wang J, Meng F, Li Q, Pan H, Zhang J N, Jiang Z, Yang W, Yu X, Gu L, and Li H 2020 Adv. Energy Mater. 10 2001413 | An In Situ Formed Surface Coating Layer Enabling LiCoO 2 with Stable 4.6 V High‐Voltage Cycle Performances
[6] | Amatucci G G, Tarascon J M, and Klein L C 1996 Solid State Ionics 83 167 | Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries
[7] | Wang H, Rus E, Sakuraba T, Kikuchi J, Kiya Y, and Abruna H D 2014 Anal. Chem. 86 6197 | CO 2 and O 2 Evolution at High Voltage Cathode Materials of Li-Ion Batteries: A Differential Electrochemical Mass Spectrometry Study
[8] | Yano A, Shikano M, Ueda A, Sakaebe H, and Ogumi Z 2017 J. Electrochem. Soc. 164 A6116 | LiCoO 2 Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating
[9] | Lu W, Zhang J, Xu J, Wu X, and Chen L 2017 ACS Appl. Mater. & Interfaces 9 19313 | In Situ Visualized Cathode Electrolyte Interphase on LiCoO 2 in High Voltage Cycling
[10] | Zhang J N, Li Q, Wang Y, Zheng J, Yu X, and Li H 2018 Energy Storage Mater. 14 1 | Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode
[11] | Lu Y C, Mansour A N, Yabuuchi N, and Shao-Horn Y 2009 Chem. Mater. 21 4408 | Probing the Origin of Enhanced Stability of “AlPO 4 ” Nanoparticle Coated LiCoO 2 during Cycling to High Voltages: Combined XRD and XPS Studies
[12] | Gabrisch H, Yazami R, and Fultz B 2004 J. Electrochem. Soc. 151 A891 | Hexagonal to Cubic Spinel Transformation in Lithiated Cobalt Oxide
[13] | Reimers J N 1992 J. Electrochem. Soc. 139 2091 | Electrochemical and In Situ X‐Ray Diffraction Studies of Lithium Intercalation in Li x CoO2
[14] | Kikkawa J, Terada S, Gunji A, Nagai T, Kurashima K, and Kimoto K 2015 J. Phys. Chem. C 119 15823 | Chemical States of Overcharged LiCoO 2 Particle Surfaces and Interiors Observed Using Electron Energy-Loss Spectroscopy
[15] | Kikkawa J, Terada S, Gunji A, Haruta M, Nagai T, Kurashima K, and Kimoto K 2014 Appl. Phys. Lett. 104 114105 | Understanding Li-K edge structure and interband transitions in Li x CoO 2 by electron energy-loss spectroscopy
[16] | Xu K 2014 Chem. Rev. 114 11503 | Electrolytes and Interphases in Li-Ion Batteries and Beyond
[17] | Choi N S, Han J G, Ha S Y, Park I, and Back C K 2015 RSC Adv. 5 2732 | Recent advances in the electrolytes for interfacial stability of high-voltage cathodes in lithium-ion batteries
[18] | Aurbach D, Markovsky B, Salitra G, Markevich E, Talyossef Y, Koltypin M, Nazar L, Ellis B, and Kovacheva D 2007 J. Power Sources 165 491 | Review on electrode–electrolyte solution interactions, related to cathode materials for Li-ion batteries
[19] | Gauthier M, Carney T J, Grimaud A, Giordano L, Pour N, Chang H H, Fenning D P, Lux S F, Paschos O, Bauer C, Maglia F, Lupart S, Lamp P, and Shao-Horn Y 2015 J. Phys. Chem. Lett. 6 4653 | Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
[20] | Wang J, Ji Y, Appathurai N, Zhou J, and Yang Y 2017 Chem. Commun. 53 8581 | Nanoscale chemical imaging of the additive effects on the interfaces of high-voltage LiCoO 2 composite electrodes
[21] | Jung S K, Gwon H, Hong J, Park K Y, Seo D H, Kim H, Hyun J, Yang W, and Kang K 2014 Adv. Energy Mater. 4 1300787 | Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
[22] | Zhao W, Zheng J, Zou L, Jia H, Liu B, Wang H, Engelhard M H, Wang C, Xu W, Yang Y, and Zhang J G 2018 Adv. Energy Mater. 8 1800297 | High Voltage Operation of Ni-Rich NMC Cathodes Enabled by Stable Electrode/Electrolyte Interphases
[23] | Wang H, Jang Y I I, Huang B, Sadoway D R, and Chiang Y M 1999 J. Electrochem. Soc. 146 473 | TEM Study of Electrochemical Cycling‐Induced Damage and Disorder in LiCoO2 Cathodes for Rechargeable Lithium Batteries
[24] | Yan P, Xiao L, Zheng J, Zhou Y, He Y, Zu X, Mao S X, Xiao J, Gao F, Zhang J G, and Wang C M 2015 Chem. Mater. 27 975 | Probing the Degradation Mechanism of Li 2 MnO 3 Cathode for Li-Ion Batteries
[25] | Peled E, Golodnitsky D, and Ardel G 1997 J. Electrochem. Soc. 144 L208 | Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
[26] | Aurbach D, Weissman I, and Schechter A 1996 Langmuir 12 3991 | X-ray Photoelectron Spectroscopy Studies of Lithium Surfaces Prepared in Several Important Electrolyte Solutions. A Comparison with Previous Studies by Fourier Transform Infrared Spectroscopy
[27] | Verdier S, El O L, Dedryvère R, Bonhomme F, Biensan P, and Gonbeau D 2007 J. Electrochem. Soc. 154 A1088 | XPS Study on Al[sub 2]O[sub 3]- and AlPO[sub 4]-Coated LiCoO[sub 2] Cathode Material for High-Capacity Li Ion Batteries
[28] | Minato T, Kawaura H, Hirayama M, Taminato S, Suzuki K, Yamada N L, Sugaya H, Yamamoto K, Nakanishi K, Orikasa Y, Tanida H, Kanno R, Arai H, Uchimoto Y, and Ogumi Z 2016 J. Phys. Chem. C 120 20082 | Dynamic Behavior at the Interface between Lithium Cobalt Oxide and an Organic Electrolyte Monitored by Neutron Reflectivity Measurements
[29] | Xia Q, Sun S, Xu J, Zan F, Yue J, Zhang Q, Gu L, and Xia H 2018 Small 14 1804149 | Self-Standing 3D Cathodes for All-Solid-State Thin Film Lithium Batteries with Improved Interface Kinetics
[30] | Nishio K, Ohnishi T, Akatsuka K, and Takada K 2014 J. Power Sources 247 687 | Crystal orientation of epitaxial LiCoO 2 films grown on SrTiO 3 substrates
[31] | Tan H, Takeuchi S, Bharathi K K, Takeuchi I, and Bendersky L A 2016 ACS Appl. Mater. & Interfaces 8 6727 | Microscopy Study of Structural Evolution in Epitaxial LiCoO 2 Positive Electrode Films during Electrochemical Cycling
[32] | Yasuhara S, Yasui S, Teranishi T, Chajima K, Yoshikawa Y, Majima Y, Taniyama T, and Itoh M 2019 Nano Lett. 19 1688 | Enhancement of Ultrahigh Rate Chargeability by Interfacial Nanodot BaTiO 3 Treatment on LiCoO 2 Cathode Thin Film Batteries
[33] | Takeuchi S, Tan H, Bharathi K K, Stafford G R, Shin J, Yasui S, Takeuchi I, and Bendersky L A 2015 ACS Appl. Mater. & Interfaces 7 7901 | Epitaxial LiCoO 2 Films as a Model System for Fundamental Electrochemical Studies of Positive Electrodes
[34] | Yang Z, Ong P V, He Y, Wang L, Bowden M E, Xu W, Droubay T C, Wang C, Sushko P V, and Du Y 2018 Small 14 1803108 | Direct Visualization of Li Dendrite Effect on LiCoO 2 Cathode by In Situ TEM
[35] | Hirooka M, Sekiya T, Omomo Y, Yamada M, Katayama H, Okumura T, Yamada Y, and Ariyoshi K 2019 Electrochim. Acta 320 134596 | Degradation mechanism of LiCoO2 under float charge conditions and high temperatures
[36] | Qin C, Jiang Y, Yan P, and Sui M 2020 J. Power Sources 460 228126 | Revealing the minor Li-ion blocking effect of LiCoO2 surface phase transition layer
[37] | Cherkashinin G, Nikolowski K, Ehrenberg H, Jacke S, Dimesso L, and Jaegermann W 2012 Phys. Chem. Chem. Phys. 14 12321 | The stability of the SEI layer, surface composition and the oxidation state of transition metals at the electrolyte–cathode interface impacted by the electrochemical cycling: X-ray photoelectron spectroscopy investigation
[38] | Jiang Y, Yan P, Yu M, Li J, Jiao H, Zhou B, and Sui M 2020 Nano Energy 78 105364 | Atomistic mechanism of cracking degradation at twin boundary of LiCoO2
[39] | Wilson J R, Cronin J S, Barnett S A, and Harris S J 2011 J. Power Sources 196 3443 | Measurement of three-dimensional microstructure in a LiCoO2 positive electrode