[1] | Harper G, Sommerville R, Kendrick E, Driscoll L, Slater P, Stolkin R, Walton A, Christensen P, Heidrich O, Lambert S, Abbott A, Ryder K S, Gaines L, and Anderson P 2019 Nature 575 75 | Recycling lithium-ion batteries from electric vehicles
[2] | Kim T, Song W, Son D Y, Ono L K, and Qi Y 2019 J. Mater. Chem. A 7 2942 | Lithium-ion batteries: outlook on present, future, and hybridized technologies
[3] | Wang H, Lan X, Huang Y, and Jiang X 2019 Chin. Phys. Lett. 36 098201 | Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites
[4] | Wu M S, Xu B, and Ouyang C Y 2016 Chin. Phys. B 25 018206 | Physics of electron and lithium-ion transport in electrode materials for Li-ion batteries
[5] | Pieczonka N P W, Liu Z, Lu P, Olson K L, Moote J, Powell B R, and Kim J H 2013 J. Phys. Chem. C 117 15947 | Understanding Transition-Metal Dissolution Behavior in LiNi 0.5 Mn 1.5 O 4 High-Voltage Spinel for Lithium Ion Batteries
[6] | Lee S, Jeong M, and Cho J 2013 Adv. Energy Mater. 3 1623 | Optimized 4-V Spinel Cathode Material with High Energy Density for Li-Ion Cells Operating at 60 °C
[7] | Wang L P, Wu Z R, Zou J, Gao P, Niu X B, Li H, and Chen L Q 2019 Joule 3 2086 | Li-free Cathode Materials for High Energy Density Lithium Batteries
[8] | Chen Y C, Huo M, Liu Y, Chen T, Leng C C, Li Q, Sun Z L, and Song L J 2015 Chin. Phys. Lett. 32 017102 | Structural, Electrical, and Lithium Ion Dynamics of Li 2 MnO 3 from Density Functional Theory
[9] | Li W, Dolocan A, Oh P, Celio H, Park S, Cho J, and Manthiram A 2017 Nat. Commun. 8 14589 | Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
[10] | Nanjundaswamy K S, Padhi A K, Goodenough J B, Okada S, Ohtsuka H, Arai H, and Yamaki J 1996 Solid State Ionics 92 1 | Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds
[11] | Kitajou A, Ishado Y, Inoishi A, and Okada S 2018 Solid State Ionics 326 48 | Amorphous xLiF-FeSO4 (1 ≤ x ≤ 2) composites as a cathode material for lithium ion batteries
[12] | Radha A V, Lander L, Rousse G, Tarascon J M, and Navrotsky A 2015 J. Mater. Chem. A 3 2601 | Thermodynamic stability and correlation with synthesis conditions, structure and phase transformations in orthorhombic and monoclinic Li 2 M(SO 4 ) 2 (M = Mn, Fe, Co, Ni) polymorphs
[13] | Shirakawa J, Nakayama M, Wakihara M, and Uchimoto Y 2007 J. Phys. Chem. B 111 1424 | Changes in Electronic Structure upon Lithium Insertion into Fe 2 (SO 4 ) 3 and Fe 2 (MoO 4 ) 3 Investigated by X-ray Absorption Spectroscopy
[14] | Schwieger J N, Kraytsberg A, and Ein-Eli Y 2011 J. Power Sources 196 1461 | Copper sulfates as cathode materials for Li batteries
[15] | Lu J C, Nishimura S, and Yamada A 2017 Chem. Mater. 29 3597 | Polyanionic Solid-Solution Cathodes for Rechargeable Batteries
[16] | Manthiram A and Goodenough J B 1989 J. Power Sources 26 403 | Lithium insertion into Fe2(SO4)3 frameworks
[17] | Wu Q, Xu Y H, and Ju H 2013 Ionics 19 471 | New-type low-cost cathode materials for Li-ion batteries: Mikasaite-type Fe2(SO4)3
[18] | Lee Y, Jo C H, Yoo J K, Choi J U, Ko W, Park H, Jo J H, Shin D O, Myung S T, and Kim J 2020 Energy Storage Mater. 24 458 | New conversion chemistry of CuSO4 as ultra-high-energy cathode material for rechargeable sodium battery
[19] | Recham N, Rousse G, Sougrati M T, Chotard J N, Frayret C, Mariyappan S, Melot B C, Jumas J C, and Tarascon J M 2012 Chem. Mater. 24 4363 | Preparation and Characterization of a Stable FeSO 4 F-Based Framework for Alkali Ion Insertion Electrodes
[20] | Sun Y, Liu L, Dong J P, Zhang B, and Huang X J 2011 Chin. Phys. B 20 126101 | Cation mixing (Li 0.5 Fe 0.5 ) 2 SO 4 F cathode material for lithium-ion batteries
[21] | Recham N, Chotard J N, Dupont L, Delacourt C, Walker W, Armand M, and Tarascon J M 2010 Nat. Mater. 9 68 | A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries
[22] | Subban C V, Ati M, Rousse G, Abakumov A M, Van Tendeloo G, Janot R, and Tarascon J M 2013 J. Am. Chem. Soc. 135 3653 | Preparation, Structure, and Electrochemistry of Layered Polyanionic Hydroxysulfates: LiMSO 4 OH (M = Fe, Co, Mn) Electrodes for Li-Ion Batteries
[23] | Lander L, Tarascon J M, and Yamada A 2018 Chem. Rec. 18 1394 | Sulfate‐Based Cathode Materials for Li‐ and Na‐Ion Batteries
[24] | Nakayama M, Goto S, Uchimoto Y, Wakihara M, Kitajima Y, Miyanaga T, and Watanabe I 2005 J. Phys. Chem. B 109 11197 | X-ray Absorption Spectroscopic Study on the Electronic Structure of Li 1 - x CoPO 4 Electrodes as 4.8 V Positive Electrodes for Rechargeable Lithium Ion Batteries
[25] | Chen M, Chen L, Hu Z, Liu Q, Zhang B, Hu Y, Gu Q, Wang J L, Wang L Z, Guo X, Chou S L, and Dou S X 2017 Adv. Mater. 29 1605535 | Carbon-Coated Na 3.32 Fe 2.34 (P 2 O 7 ) 2 Cathode Material for High-Rate and Long-Life Sodium-Ion Batteries
[26] | Zhong K F, Xia X, Zhang B, Li H, Wang Z X, and Chen L Q 2010 J. Power Sources 195 3300 | MnO powder as anode active materials for lithium ion batteries
[27] | Zou J, Zhao J, Wang B, Chen S, Chen P, Ran Q, Li L, Wang X, Yao J, Li H, Huang J, Niu X, and Wang L 2020 ACS Appl. Mater. & Interfaces 12 44850 | Unraveling the Reaction Mechanism of FeS 2 as a Li-Ion Battery Cathode
[28] | Kim S, Choi J, Bak S M, Sang L, Li Q, Patra A, and Braun P V 2019 Adv. Funct. Mater. 29 1901719 | Reversible Conversion Reactions and Small First Cycle Irreversible Capacity Loss in Metal Sulfide‐Based Electrodes Enabled by Solid Electrolytes
[29] | Poizot P, Laruelle S, Grugeon S, and Tarascon J M 2002 J. Electrochem. Soc. 149 A1212 | Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward Li
[30] | Reddy M V, Yu T, Sow C H, Shen Z X, Lim C T, Rao G V S, and Chowdari B V R 2007 Adv. Funct. Mater. 17 2792 | α-Fe2O3 Nanoflakes as an Anode Material for Li-Ion Batteries
[31] | Guo X, Fang X, Mao Y, Wang Z, Wu F, and Chen L 2011 J. Phys. Chem. C 115 3803 | Capacitive Energy Storage on Fe/Li 3 PO 4 Grain Boundaries
[32] | Chen C C and Maier J 2018 Nat. Energy 3 102 | Decoupling electron and ion storage and the path from interfacial storage to artificial electrodes