[1] | Wang J, Han J, Chen X, and Wang X 2019 InfoMat 1 33 | Design strategies for two‐dimensional material photodetectors to enhance device performance
[2] | Luo W et al. 2018 Nano Lett. 18 5439 | Room-Temperature Single-Photon Detector Based on Single Nanowire
[3] | Long M, Wang P, Fang H, and Hu W 2019 Adv. Funct. Mater. 29 1803807 | Progress, Challenges, and Opportunities for 2D Material Based Photodetectors
[4] | Weng S et al. 2020 Phys. Status Solidi RRL 14 2000085 | Air‐Stable Wide‐Bandgap 2D Semiconductor ZnIn 2 S 4
[5] | Li C et al. 2020 Light: Sci. & Appl. 9 31 | Ultrafast and broadband photodetectors based on a perovskite/organic bulk heterojunction for large-dynamic-range imaging
[6] | Zhu T, Yang Y, Zheng L, Liu L, Becker M L, and Gong X 2020 Adv. Funct. Mater. 30 1909487 | Solution‐Processed Flexible Broadband Photodetectors with Solution‐Processed Transparent Polymeric Electrode
[7] | Li Y, Wang X, Li G, Wu Y, Pan Y, Xu Y, Chen J, and Lei W 2020 Chin. Phys. Lett. 37 018101 | Fast Liquid Phase Epitaxial Growth for Perovskite Single Crystals *
[8] | Fatuzzo E, Nitsche R, Harbeke G, Ruppel W, Roetschi H, and Merz W J 1962 Phys. Rev. 127 2036 | Ferroelectricity in SbSI
[9] | Berlincourt D, Nitsche R, Merz W J, and Jaffe H 1964 Appl. Phys. Lett. 4 61 | PIEZOELECTRIC EFFECT IN THE FERROELECTRIC RANGE IN SbSI
[10] | Rosenthal T, Doeblinger M, Wagatha P, Gold C, Scheidt E W, Scherer W, and Oeckler O 2011 Z. Anorg. Allg. Chem. 637 2239 | Structural Features and Physical Properties of In2Bi3Se7I, InBi2Se4I, and BiSeI
[11] | Xin J Z, Fu C G, Shi W J, Li G W, Auffermann G, Qi Y P, Zhu T J, Zhao X B, and Felser C 2018 Rare Met. 37 274 | Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture
[12] | Sasaki Y 1965 Jpn. J. Appl. Phys. 4 614 | Photoconductivity of a Ferroelectric Photoconductor BiSI
[13] | Chepur D V, Bercha D M, Turyanitsa I D, and Slivka V Y 1968 Phys. Status Solidi 30 461 | Peculiarities of the Energy Spectrum and Edge Absorption in the Chain Compounds AVBVICVII
[14] | Kunioku H, Higashi M, and Abe R 2016 Sci. Rep. 6 32664 | Low-Temperature Synthesis of Bismuth Chalcohalides: Candidate Photovoltaic Materialswith Easily, Continuously Controllable Band gap
[15] | Ganose A M, Butler K T, Walsh A, and Scanlon D O 2016 J. Mater. Chem. A 4 2060 | Relativistic electronic structure and band alignment of BiSI and BiSeI: candidate photovoltaic materials
[16] | Shi H, Ming W, and Du M 2016 Phys. Rev. B 93 104108 | Bismuth chalcohalides and oxyhalides as optoelectronic materials
[17] | Arivuoli D, Gnanam F D, and Ramasamy P 1987 J. Mater. Sci. 22 981 | Growth of bismuth seleno iodide single crystals from the vapour
[18] | Teng M K, Balkanski M, Massot M, and Ziolkiewicz M K 1974 Phys. Status Solidi B 62 173 | Optical Phonon Analysis in the AVBVICVII Compounds
[19] | Kanchana G and Arivuoli D 2001 Indian J. Eng. & Mater. Sci. 8 373 |
[20] | Audzijonis A, Gaigalas G, Zigas L, Sereika R, Zaltauskas R, Balnionis D, and Reza A 2009 Phys. Status Solidi B 246 1702 | Electronic structure and optical properties of BiSeI crystal
[21] | Xiao B, Zhu M, Ji L, Zhang B, Dong J, Yu J, Sun Q, Jie W, and Xu Y 2019 J. Cryst. Growth 517 7 | Centimeter size BiSeI crystal grown by physical vapor transport method
[22] | Ganose A M, Matsumoto S, Buckeridge J, and Scanlon D O 2018 Chem. Mater. 30 3827 | Defect Engineering of Earth-Abundant Solar Absorbers BiSI and BiSeI
[23] | Yaws C L 1995 in Handbook of Vapor Pressure, edited by C. L. Yaws (Gulf Professional Publishing), p 1 |
[24] | Blaha P, Schwarz K, Sorantin P, and Trickey S B 1990 Comput. Phys. Commun. 59 399 | Full-potential, linearized augmented plane wave programs for crystalline systems
[25] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[26] | Fong C Y, Perlov C, and Wooten F 1982 J. Phys. C 15 2605 | Electronic properties of BiSeI and BiSeBr
[27] | Davies J E D 1973 J. Inorg. Nucl. Chem. 35 1531 | Solid state vibrational spectroscopy—III[1] The infrared and raman spectra of the bismuth(III) oxide halides
[28] | Lan C, Li C, Yin Y, and Liu Y 2015 Nanoscale 7 5974 | Large-area synthesis of monolayer WS 2 and its ambient-sensitive photo-detecting performance
[29] | Ulaganathan R K et al. 2016 Nanoscale 8 2284 | High photosensitivity and broad spectral response of multi-layered germanium sulfide transistors
[30] | Xu W et al. 2020 Nano Res. 13 2091 | Vapor phase growth of two-dimensional PdSe2 nanosheets for high-photoresponsivity near-infrared photodetectors
[31] | Ghatak S, Pal A N, and Ghosh A 2011 ACS Nano 5 7707 | Nature of Electronic States in Atomically Thin MoS 2 Field-Effect Transistors
[32] | George G and Krusius J P 1994 J. Lightwave Technol. 12 1387 | Dynamic response of high-speed PIN and Schottky-barrier photodiode layers to nonuniform optical illumination
[33] | Sun Z and Chang H 2014 ACS Nano 8 4133 | Graphene and Graphene-like Two-Dimensional Materials in Photodetection: Mechanisms and Methodology
[34] | Luo P, Zhuge F, Wang F, Lian L, Liu K, Zhang J, and Zhai T 2019 ACS Nano 13 9028 | PbSe Quantum Dots Sensitized High-Mobility Bi 2 O 2 Se Nanosheets for High-Performance and Broadband Photodetection Beyond 2 μm
[35] | Lv L, Zhuge F, Xie F, Xiong X, Zhang Q, Zhang N, Huang Y, and Zhai T 2019 Nat. Commun. 10 3331 | Reconfigurable two-dimensional optoelectronic devices enabled by local ferroelectric polarization
[36] | Guo Q et al. 2016 Nano Lett. 16 4648 | Black Phosphorus Mid-Infrared Photodetectors with High Gain
[37] | Long M et al. 2020 Appl. Phys. Lett. 117 231104 | Scalable fabrication of long-wave infrared PtSe 2 -G heterostructure array photodetectors
[38] | Soci C, Zhang A, Xiang B, Dayeh S A, Aplin D P R, Park J, Bao X Y, Lo Y H, and Wang D 2007 Nano Lett. 7 1003 | ZnO Nanowire UV Photodetectors with High Internal Gain
[39] | Schubert M C, Riepe S, Bermejo S, and Warta W 2006 J. Appl. Phys. 99 114908 | Determination of spatially resolved trapping parameters in silicon with injection dependent carrier density imaging
[40] | Sanchez O L, Lembke D, Kayci M, Radenovic A, and Kis A 2013 Nat. Nanotechnol. 8 497 | Ultrasensitive photodetectors based on monolayer MoS2
[41] | Yin Z et al. 2012 ACS Nano 6 74 | Single-Layer MoS 2 Phototransistors
[42] | Han X et al. 2021 ACS Appl. Mater. & Interfaces 13 2836 | High-Performance Phototransistors Based on MnPSe 3 and Its Hybrid Structures with Au Nanoparticles
[43] | Gu Y, Wang Y, Xia J, and Meng X 2020 Chin. Phys. Lett. 37 048101 | Chemical Vapor Deposition of Two-Dimensional PbS Nanoplates for Photodetection
[44] | Wei Q, Shen B, Chen Y, Xu B, Xia Y, Yin J, and Liu Z 2017 Mater. Lett. 193 101 | Large-sized PbI 2 single crystal grown by co-solvent method for visible-light photo-detector application
[45] | Ding J, Fang H, Lian Z, Li J, Lv Q, Wang L, Sun J, and Yan Q 2016 CrystEngComm 18 4405 | A self-powered photodetector based on a CH 3 NH 3 PbI 3 single crystal with asymmetric electrodes
[46] | Zang C, Qi X, Ren L, Hao G, Liu Y, Li J, and Zhong J 2014 Appl. Surf. Sci. 316 341 | Photoresponse properties of ultrathin Bi 2 Se 3 nanosheets synthesized by hydrothermal intercalation and exfoliation route