[1] | Soref R 2010 Nat. Photon. 4 495 | Mid-infrared photonics in silicon and germanium
[2] | Kim S et al. 2017 Appl. Phys. Lett. 110 153505 | Fabrication of high-quality GaAs-based photodetector arrays on Si
[3] | Liu H et al. 2011 Nat. Photon. 5 416 | Long-wavelength InAs/GaAs quantum-dot laser diode monolithically grown on Ge substrate
[4] | Wei W Q et al. 2018 Appl. Phys. Lett. 113 053107 | InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm
[5] | Wei W Q, Wang J H, Zhang J Y, Feng Q, Wang Z, Xu H X, Wang T, and Zhang J J 2020 Chin. Phys. Lett. 37 024203 | A CMOS Compatible Si Template with (111) Facets for Direct Epitaxial Growth of III–V Materials
[6] | Tobin S P et al. 1988 IEEE Electron Device Lett. 9 256 | High-efficiency GaAs/Ge monolithic tandem solar cells
[7] | Pillarisetty R 2011 Nature 479 324 | Academic and industry research progress in germanium nanodevices
[8] | Chen K P et al. 2009 J. Phys. D 42 035303 | Study of surface microstructure origin and evolution for GaAs grown on Ge/Si 1− x Ge x /Si substrate
[9] | Kroemer H 1987 J. Cryst. Growth 81 1 | Current understanding and applications of the RHEED intensity oscillation technique
[10] | Sieg R M et al. 1998 J. Electron. Mater. 27 900 | Anti-phase domain-free growth of GaAs on offcut (001) Ge wafers by molecular beam epitaxy with suppressed Ge outdiffusion
[11] | Ting S M et al. 1998 J. Electron. Mater. 27 451 |
[12] | Wei W Q et al. 2017 Opt. Mater. Express 7 2955 | C/L-band emission of InAs QDs monolithically grown on Ge substrate
[13] | Zhang J Y et al. 2020 Opt. Mater. Express 10 1045 | Epitaxial growth of InAs/GaAs quantum dots on 113-faceted Ge/Si (001) hollow substrate
[14] | Zhang D et al. 2013 Phys. Rev. Lett. 111 156402 | Interface-Induced Topological Insulator Transition in Quantum Wells
[15] | Neddermeyer H 1996 Rep. Prog. Phys. 59 701 | Scanning tunnelling microscopy of semiconductor surfaces
[16] | Krug J, Politi P, and Michely T 2000 Phys. Rev. B 61 14037 | Island nucleation in the presence of step-edge barriers: Theory and applications
[17] | Shin B and Aziz M J 2007 Phys. Rev. B 76 165408 | Modeling RHEED intensity oscillations in multilayer epitaxy: Determination of the Ehrlich-Schwoebel barrier in Ge(001) homoepitaxy
[18] | McCoy J M, Maksym P A, and Kawamura T 1991 Surf. Sci. 257 353 | Monte Carlo simulation of equilibrium thermal roughening of the Ge(001)2 × 1 surface
[19] | Van Vroonhoven E, Zandvliet H J W, and Poelsema B 2004 Phys. Rev. Lett. 93 116102 | Optical Response of the Copper Surface to Carbon Monoxide Deposition
[20] | Johnson A D et al. 1991 Phys. Rev. B 44 1134 | Combined (1×2)→(1×1) transition and atomic roughening of Ge(001) studied with surface x-ray diffraction
[21] | Pimpinelli A and Métois J J 1994 Phys. Rev. Lett. 72 3566 | Macrovacancy nucleation on evaporating Si(001)
[22] | Nielsen J F et al. 2001 Phys. Rev. Lett. 87 136103 | Enhanced Terrace Stability for Preparation of Step-Free Surfaces