[1] | Li D, Lee K, Wang B, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 | Superconductivity in an infinite-layer nickelate
[2] | Li D, Wang B, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 | Superconducting Dome in Infinite Layer Films
[3] | Azuma M, Hiroi Z, Takano M, Bando Y, and Takeda Y 1992 Nature 356 775 | Superconductivity at 110 K in the infinite-layer compound (Sr1-xCax)1-yCuO2
[4] | Anisimov V I, Bukhvalov D, and Rice T M 1999 Phys. Rev. B 59 7901 | Electronic structure of possible nickelate analogs to the cuprates
[5] | Botana A S and Norman M R 2020 Phys. Rev. X 10 011024 | Similarities and Differences between and and Implications for Superconductivity
[6] | Fujimori A 2019 J. Club For Condens. Matter Phys. DOI:10.36471/JCCM_December_2019_02 | Electronic structure, magnetism, and superconductivity in infinite-layer nickelates
[7] | Liang Z J, Jiang R, and Ku W 2020 arXiv:2005.00022 [cond-mat.supr-con] | Where do the hole carriers reside in the new superconducting nickelates?
[8] | Norman M R 2020 Physics 13 85 | Entering the Nickel Age of Superconductivity
[9] | Ryee S, Yoon H, Kim T J, Jeong M Y, and Han M J 2020 Phys. Rev. B 101 064513 | Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate
[10] | Wu X, Sante D D, Schwemmer T, Hanke W, Hwang H Y, Raghu S, and Thomale R 2020 Phys. Rev. B 101 060504(R) | Robust -wave superconductivity of infinite-layer nickelates
[11] | Zhang G M, Yang Y F, and Zhang F C 2020 Phys. Rev. B 101 020501(R) | Self-doped Mott insulator for parent compounds of nickelate superconductors
[12] | Goodge B H, Li D, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y, and Kourkoutis L F 2020 Proc. Natl. Acad. Sci. USA 12 118 |
[13] | Karp J, Hampe A, Zing M, Botana A S, Park H, Norman M R, and Millis A J 2020 Phys. Rev. B 102 245130 | Comparative many-body study of and
[14] | Jiang M, Berciu M, and Sawatzky G A 2020 Phys. Rev. Lett. 124 207004 | Critical Nature of the Ni Spin State in Doped
[15] | Bocquet A E, Mizokawa T, Morikawa K, Fujimori A, Barman S R, Maiti K, Sarma D D, Tokura Y, and Onoda M 1996 Phys. Rev. B 53 1161 | Electronic structure of early 3 d -transition-metal oxides by analysis of the 2 p core-level photoemission spectra
[16] | Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P, and Lee W S 2020 Nat. Mater. 19 381 | Electronic structure of the parent compound of superconducting infinite-layer nickelates
[17] | Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109 | Infinite-layer : is not
[18] | Choi M Y, Lee K W, and Pickett W E 2020 Phys. Rev. B 101 020503(R) | Role of states in infinite-layer
[19] | Gu Y, Zhu S, Wang X, Hu J, and Chen H 2020 Commun. Phys. 3 84 | A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates
[20] | Chaloupka J and Khaliullin G 2008 Phys. Rev. Lett. 100 016404 | Orbital Order and Possible Superconductivity in Superlattices
[21] | Leonov I, Skornyakov S L, and Savrasov S Y 2020 Phys. Rev. B 101 241108(R) | Lifshitz transition and frustration of magnetic moments in infinite-layer upon hole doping
[22] | Mandal P, Patel R K, Rout D, Banerjee R, Bag R, Karmakar K, Narayan A, Freeland J W, Singh S, and Middey S 2021 Phys. Rev. B 103 L060504 | Giant orbital polarization of in a square planar environment
[23] | Wang Y, Kang C J, Miao H, and Kotliar G 2020 Phys. Rev. B 102 161118(R) | Hund's metal physics: From to
[24] | Li Q, He C, Si J, Zhu X, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16 | Absence of superconductivity in bulk Nd1−xSrxNiO2
[25] | Hayward M A, Green M A, Rosseinksky M J, and Sloan J 1999 J. Am. Chem. Soc. 121 8843 | Sodium Hydride as a Powerful Reducing Agent for Topotactic Oxide Deintercalation: Synthesis and Characterization of the Nickel(I) Oxide LaNiO 2
[26] | Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839 | Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride
[27] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F, and Phelan D 2020 Phys. Rev. Mater. 4 084409 | Synthesis and characterization of bulk and
[28] | Shao Y T, Hong W S, Li S L, Li Z, and Luo J L 2019 Chin. Phys. Lett. 36 127401 | 19 F NMR Study of the Bilayer Iron-Based Superconductor KCa 2 Fe 4 As 4 F 2 *
[29] | Wu Q, Zhou H, Wu Y, Hu L, Ni S, Tian Y, Sun F, Zhou F, Dong X, Zhao Z, and Zhao J 2020 Chin. Phys. Lett. 37 097802 | Ultrafast Quasiparticle Dynamics and Electron-Phonon Coupling in (Li 0.84 Fe 0.16 )OHFe 0.98 Se
[30] | Jia Y T, Gong C S, Liu Y X, Zhao J F, Dong C, Dai G Y, Li X D, Lei H C, Yu R Z, Zhang G M, and Jin C Q 2020 Chin. Phys. Lett. 37 097404 | Mott Transition and Superconductivity in Quantum Spin Liquid Candidate NaYbSe 2
[31] | Liu Z Y, Dong Q X, Shan P F, Wang Y Y, Dai J H, Jana R, Chen K Y, Sun J P, Wang B S, Yu X H, Liu G T, Uwatoko Y, Sui Y, Yang H X, Chen G F, and Cheng J G 2020 Chin. Phys. Lett. 37 047102 | Pressure-Induced Metallization and Structural Phase Transition in the Quasi-One-Dimensional TlFeSe 2
[32] | Li Q, He C, Zhu X, Si J, Fan X, and Wen H H 2021 Sci. Chin. Phys. Mech. & Astron. 64 227411 | Contrasting physical properties of the trilayer nickelates Nd4Ni3O10 and Nd4Ni3O8
[33] | Moriya T 1963 J. Phys. Soc. Jpn. 18 516 | The Effect of Electron-Electron Interaction on the Nuclear Spin Relaxation in Metals
[34] | Li B Z, Wang C, Yang P T, Sun J P, Liu Y B, Wu J, Ren Z, Cheng J G, Zhang G M, and Cao G H 2020 Phys. Rev. B 101 195142 | Metal-to-metal transition and heavy-electron state in
[35] | Kiefl R F, Brewer J H, Carolan J, Dosanjh P, Hardy W N, Kadono R, Kempton J R, Krahn R, Schleger P, Yang B X, Zhou H, Luke G M, Sternlieb B, Uemura Y J, Kossler W J, Yu X H, Ansaldo E J, Takagi H, Uchida S, and Seaman C L 1989 Phys. Rev. Lett. 63 2136 | Muon-spin-rotation study of magnetism in and below 90 mK
[36] | Abragam A 1961 Principles of Nuclear Magnetism (Oxford: Oxford University Press) |
[37] | Alonso J A, Martínez-Lope M J, and Hidalgo M A 1995 J. Solid State Chem. 116 146 | Hole and Electron Doping of RNiO3 (R = La, Nd)
[38] | Retoux R, Rodriguez-Carvaja J, and Lacorre P 1998 J. Solid State Chem. 140 307 | Neutron Diffraction and TEM Studies of the Crystal Structure and Defects of Nd4Ni3O8
[39] | Caviglia A D, Först M, Scherwitzl R, Khanna V, Bromberger H, Mankowsky R, Singla R, Chuang Y D, Lee W S, Krupin O, Schlotter W F, Turner J J, Dakovski G L, Minitti M P, Robinson J, Scagnoli V, Wilkins S B, Cavill S A, Gibert M, Gariglio S, Zubko P, Triscone J M, Hill J P, Dhesi S S, and Cavalleri A 2013 Phys. Rev. B 88 220401(R) | Photoinduced melting of magnetic order in the correlated electron insulator NdNiO
[40] | Kumar D, Rajeev K P, Alonso J A, and Martínez-Lope M J 2013 Phys. Rev. B 88 014410 | Spin-canted magnetism and decoupling of charge and spin ordering in NdNiO
[41] | Hooda M K and Yadav C S 2016 Physica B 491 31 | Electronic properties and the nature of metal–insulator transition in NdNiO3 prepared at ambient oxygen pressure
[42] | Scagnoli V, Staub U, Bodenthin Y, García-Fernández M, Mulders A M, Meijer G I, and Hammerl G 2008 Phys. Rev. B 77 115138 | Induced noncollinear magnetic order of in observed by resonant soft x-ray diffraction
[43] | Olafsen A, Fjellvåg H, and Hauback B C 2000 J. Solid State Chem. 151 46 | Crystal Structure and Properties of Nd4Co3O10+δ and Nd4Ni3O10−δ
[44] | Cui Y, Zhang G, Li H, Lin H, Zhu X, Wen H H, Wang G, Sun J, Ma M, Li Y, Gong D, Xie T, Gu Y, Li S, Luo H, Yu P, and Yu W 2018 Sci. Bull. 63 11 | Protonation induced high- T c phases in iron-based superconductors evidenced by NMR and magnetization measurements
[45] | Cui Y, Hu Z, Zhang J, Ma W, Ma M, Ma Z, Wang C, Yan J, Sun J, Cheng J, Jia S, Li Y, Wen J, Lei H, Yu P, Ji W, and Yu W 2019 Chin. Phys. Lett. 36 077401 | Ionic-Liquid-Gating Induced Protonation and Superconductivity in FeSe, FeSe 0.93 S 0.07 , ZrNCl, 1 T -TaS 2 and Bi 2 Se 3 *
[46] | Wei X, Li H B, Zhang Q, Li D, Qin M, Xu L, Hu W, Huan Q, Yu L, Miao J, Yuan J, Zhu B, Kusmartseva A, Kusmartsev F V, Silhanek A V, Xiang T, Yu W, Lin Y, Gu L, Yu P, Chen Q, and Jin K 2020 Sci. Bull. 65 1607 | A selective control of volatile and non-volatile superconductivity in an insulating copper oxide via ionic liquid gating
[47] | Si L, Xiao W, Kaufmann J, Tomczak J M, Lu Y, Zhong Z, and Held K 2020 Phys. Rev. Lett. 124 166402 | Topotactic Hydrogen in Nickelate Superconductors and Akin Infinite-Layer Oxides
[48] | Liu Z, Ren Z, Zhu W, Wang Z, and Yang J 2020 npj Quantum Mater. 5 31 | Electronic and magnetic structure of infinite-layer NdNiO2: trace of antiferromagnetic metal
[49] | Lebed A G 2008 The Physics of Organic Superconductors and Conductors, Springer Series in Materials Science (Berlin: Springer) vol 110 |
[50] | Rossi M, Lu H, Nag A, Li D, Osada M, Lee K, Wang B Y, Agrestini S, Garcia-Fernandez M, Chuang Y D, Shen Z X, Hwang H Y, Moritz B, Zhou K J, Devereaux T P, and Lee W S 2020 arXiv:2011.00595 [cond-mat.str-el] | Orbital and Spin Character of Doped Carriers in Infinite-Layer Nickelates
[51] | Zhang Y H and Vishwanath A 2020 Phys. Rev. Res. 2 023112 | Type-II model in superconducting nickelate
[52] | Hewson A C 2009 The Kondo Problem to Heavy Fermions (Cambridge: Cambridge University Press) |
[53] | Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, and Xue Q K 2012 Chin. Phys. Lett. 29 037402 | Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on SrTiO 3
[54] | Li Z X, Wang F, Yao H, and Lee D H 2016 Sci. Bull. 61 925 | What makes the Tc of monolayer FeSe on SrTiO3 so high: a sign-problem-free quantum Monte Carlo study