[1] | Sarmadian N, Saniz R, Partoens B, Lamoen D, Volety K, Huyberechts G, and Paul J 2014 Phys. Chem. Chem. Phys. 16 17724 | High throughput first-principles calculations of bixbyite oxides for TCO applications
[2] | Zhang J, Zeng Q, Oganov A R, Dong D, and Liu Y 2014 Phys. Lett. A 378 3549 | High throughput exploration of ZrxSi1−xO2 dielectrics by evolutionary first-principles approaches
[3] | Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z, and Zeng H 2016 Angew. Chem. Int. Ed. 55 1666 | Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities
[4] | Emery A A, Saal J E, Kirklin S, Hegde V I, and Wolverton C 2016 Chem. Mater. 28 5621 | High-Throughput Computational Screening of Perovskites for Thermochemical Water Splitting Applications
[5] | Kweun J M, Li C, Zheng Y, Cho M, Kim Y Y, and Cho K 2016 Appl. Surf. Sci. 370 279 | Bulk-surface relationship of an electronic structure for high-throughput screening of metal oxide catalysts
[6] | Wang J, Yang X, Wang G, Ren J, Wang Z, Zhao X, and Pan Y 2017 Comput. Mater. Sci. 134 190 | Error estimation in high-throughput density functional theory calculation for material property: elastic constants of cubic binary alloy case
[7] | Miyata M, Ozaki T, Takeuchi T, Nishino S, Inukai M, and Koyano M 2018 J. Electron. Mater. 47 3254 | High-Throughput Screening of Sulfide Thermoelectric Materials Using Electron Transport Calculations with OpenMX and BoltzTraP
[8] | Restuccia P, Levita G, Wolloch M, Losi G, Fatti G, Ferrario M, and Righi M C 2018 Comput. Mater. Sci. 154 517 | Ideal adhesive and shear strengths of solid interfaces: A high throughput ab initio approach
[9] | Barreteau C, Crivello J C, Joubert J M, and Alleno E 2019 Comput. Mater. Sci. 156 96 | Looking for new thermoelectric materials among TMX intermetallics using high-throughput calculations
[10] | Saal J E, Kirklin S, Aykol M, Meredig B, and Wolverton C 2013 JOM 65 1501 | Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD)
[11] | Emery A A and Wolverton C 2017 Sci. Data 4 170153 | High-throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO3 perovskites
[12] | Kirklin S, Saal J E, Hegde V I, and Wolverton C 2016 Acta Mater. 102 125 | High-throughput computational search for strengthening precipitates in alloys
[13] | Schatschneider B, Monaco S, Liang J J, and Tkatchenko A 2014 J. Phys. Chem. C 118 19964 | High-Throughput Investigation of the Geometry and Electronic Structures of Gas-Phase and Crystalline Polycyclic Aromatic Hydrocarbons
[14] | Bradlyn B, Elcoro L, Cano J, Vergniory M G, Wang Z J, Felser C, Aroyo M I, and Bernevig B A 2017 Nature 547 298 | Topological quantum chemistry
[15] | Vergniory M G, Elcoro L, Felser C, Regnault N, Bernevig B A, and Wang Z J 2019 Nature 566 480 | A complete catalogue of high-quality topological materials
[16] | Curtarolo S, Setyawan W, Hart G L W, Jahnatek M, Chepulskii R V, Taylor R H, Wanga S D, Xue J K, Yang K S, Levy O, Mehl M J, Stokes H T, Demchenko D O, and Morgan D 2012 Comput. Mater. Sci. 58 218 | AFLOW: An automatic framework for high-throughput materials discovery
[17] | Calderon C E, Plata J J, Toher C, Oses C, Levy O, Fornari M, Natan A, Mehl M J, Hart G, Nardelli M B, and Curtarolo S 2015 Comput. Mater. Sci. 108 233 | The AFLOW standard for high-throughput materials science calculations
[18] | Jain A, Hautier G, Moore C J, Ong S P, Fischer C C, Mueller T, Persson K A, and Ceder G 2011 Comput. Mater. Sci. 50 2295 | A high-throughput infrastructure for density functional theory calculations
[19] | Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 011002 | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
[20] | Ashton M, Paul J, Sinnott S B, and Hennig R G 2017 Phys. Rev. Lett. 118 106101 | Topology-Scaling Identification of Layered Solids and Stable Exfoliated 2D Materials
[21] | Lebegue S, Bjorkman T, Klintenberg M, Nieminen R M, and Eriksson O 2013 Phys. Rev. X 3 031002 | Two-Dimensional Materials from Data Filtering and Ab Initio Calculations
[22] | Miro P, Audiffred M, and Heine T 2014 Chem. Soc. Rev. 43 6537 | An atlas of two-dimensional materials
[23] | Tada T, Takemoto S, Matsuishi S, and Hosono H 2014 Inorg. Chem. 53 10347 | High-Throughput ab Initio Screening for Two-Dimensional Electride Materials
[24] | Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli I E, Cepellotti A, Pizzi G, and Marzari N 2018 Nat. Nanotechnol. 13 246 | Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds
[25] | Olsen T, Okugawa T, Torelli D, Deilmann T, and Thygesen K S 2019 Phys. Rev. Mater. 3 024005 | Discovering two-dimensional topological insulators from high-throughput computations
[26] | Choudhary K, Kalish I, Beams R, and Tavazza F 2017 Sci. Rep. 7 5179 | High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
[27] | Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt P S, Hinsche N F, Gjerding M N, Torelli D, Larsen P M, Riis-Jensen A C, Gath J, Jacobsen K W, Mortensen J J, Olsen T, and Thygesen K S 2018 2D Mater. 5 042002 | The Computational 2D Materials Database: high-throughput modeling and discovery of atomically thin crystals
[28] | Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, and Kim J 2019 Nat. Mater. 18 550 | Integration of bulk materials with two-dimensional materials for physical coupling and applications
[29] | Zhang S, Yan Z, Li Y, Chen Z, and Zeng H 2015 Angew. Chem. Int. Ed. 54 3112 | Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions
[30] | Scalise E, Houssa M, Pourtois G, Afanas'ev V V, and Stesmans A 2012 Nano Res. 5 43 | Strain-induced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2
[31] | Peng X, Wei Q, and Copple A 2014 Phys. Rev. B 90 085402 | Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene
[32] | Amorim B, Cortijo A, de Juan F, Grushin A G, Guinea F, Gutiérrez-Rubio A, Ochoa H, Parente V, Roldán R, San-Jose P, Schiefele J, Sturla M, and Vozmediano M A H 2016 Phys. Rep. 617 1 | Novel effects of strains in graphene and other two dimensional materials
[33] | Gao Y, Zhang Y Y, and Du S 2019 J. Phys.: Condens. Matter 31 194001 | Recovery of the Dirac states of graphene by intercalating two-dimensional traditional semiconductors
[34] | Giovannetti G, Khomyakov P A, Brocks G, Karpan V M, van den Brink J, and Kelly P J 2008 Phys. Rev. Lett. 101 026803 | Doping Graphene with Metal Contacts
[35] | Yan J, Wu L, Ma R S, Zhu S, Bian C, Ma J, Huan Q, Bao L, Mao J, Du S, and Gao H J 2019 2D Mater. 6 045050 | Substrate, a choice of engineering the pseudospin in graphene
[36] | Dedkov Y S, Fonin M, Rudiger U, and Laubschat C 2008 Phys. Rev. Lett. 100 107602 | Rashba Effect in the Graphene/Ni(111) System
[37] | Robinson B J, Giusca C E, Gonzalez Y T, Kay N D, Kazakova O, and Kolosov O V 2015 2D Mater. 2 015005 | Structural, optical and electrostatic properties of single and few-layers MoS 2 : effect of substrate
[38] | Su L Q, Yu Y F, Cao L Y, and Zhang Y 2015 Nano Res. 8 2686 | Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2
[39] | Mathew K, Singh A K, Gabriel J J, Choudhary K, Sinnott S B, Davydov A V, Tavazza F, and Hennig R G 2016 Comput. Mater. Sci. 122 183 | MPInterfaces: A Materials Project based Python tool for high-throughput computational screening of interfacial systems
[40] | Ding H, Dwaraknath S S, Garten L, Ndione P, Ginley D, and Persson K A 2016 ACS Appl. Mater. & Interfaces 8 13086 | Computational Approach for Epitaxial Polymorph Stabilization through Substrate Selection
[41] | Gao B, Gao P Y, Lu S H, Lv J, Wang Y C, and Ma Y M 2019 Sci. Bull. 64 301 | Interface structure prediction via CALYPSO method
[42] | Pan Y, Shi D X, and Gao H J 2007 Chin. Phys. 16 3151 | Formation of graphene on Ru(0001) surface
[43] | Martoccia D, Willmott P R, Brugger T, Björck M, Günther S, Schlepütz C M, Cervellino A, Pauli S A, Patterson B D, Marchini S, Wintterlin J, Moritz W, and Greber T 2008 Phys. Rev. Lett. 101 126102 | Graphene on Ru(0001): A Supercell
[44] | Iannuzzi M, Kalichava I, Ma H, Leake S J, Zhou H, Li G, Zhang Y, Bunk O, Gao H, Hutter J, Willmott P R, and Greber T 2013 Phys. Rev. B 88 125433 | Moiré beatings in graphene on Ru(0001)
[45] | Meng L, Wu R T, Zhang L Z, Li L F, Du S X, Wang Y L, and Gao H J 2012 J. Phys.: Condens. Matter 24 314214 | Multi-oriented moiré superstructures of graphene on Ir(111): experimental observations and theoretical models
[46] | Loginova E, Nie S, Thürmer K, Bartelt N C, and McCarty K F 2009 Phys. Rev. B 80 085430 | Defects of graphene on Ir(111): Rotational domains and ridges
[47] | Shah J, Wang W, Sohail H M, and Uhrberg R I G 2020 2D Mater. 7 025013 | Experimental evidence of monolayer arsenene: an exotic 2D semiconducting material
[48] | Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L, Zhu S Y, Wang Y Q, Du S X, Shi Y G, Ibrahim K, and Gao H J 2017 Adv. Mater. 29 1605407 | Epitaxial Growth and Air-Stability of Monolayer Antimonene on PdTe 2
[49] | 2D material and substrate interfaces database [Online] (accessed 2, 2021). http://n11.iphy.ac.cn/2dinterface.html |
[50] | Zhao L, Rim K T, Zhou H, He R, Heinz T F, Pinczuk A, Flynn G W, and Pasupathy A N 2011 Solid State Commun. 151 509 | Influence of copper crystal surface on the CVD growth of large area monolayer graphene
[51] | He R, Zhao L, Petrone N, Kim K S, Roth M, Hone J, Kim P, Pasupathy A, and Pinczuk A 2012 Nano Lett. 12 2408 | Large Physisorption Strain in Chemical Vapor Deposition of Graphene on Copper Substrates
[52] | Xu X, Zhang Z, Dong J, Yi D, Niu J, Wu M, Lin L, Yin R, Li M, Zhou J, Wang S, Sun J, Duan X, Gao P, Jiang Y, Wu X, Peng H, Ruoff R S, Liu Z, Yu D, Wang E, Ding F, and Liu K 2017 Sci. Bull. 62 1074 | Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil
[53] | Marchini S, Günther S, and Wintterlin J 2007 Phys. Rev. B 76 075429 | Scanning tunneling microscopy of graphene on Ru(0001)
[54] | de Parga A L V, Calleja F, Borca B, Passeggi M C G, Hinarejos J J, Guinea F, and Miranda R 2008 Phys. Rev. Lett. 100 056807 | Periodically Rippled Graphene: Growth and Spatially Resolved Electronic Structure
[55] | Wang B, Günther S, Wintterlin J, and Bocquet M L 2010 New J. Phys. 12 043041 | Periodicity, work function and reactivity of graphene on Ru(0001) from first principles
[56] | Que Y D, Xiao W D, Fei X M, Chen H, Huang L, Du S X, and Gao H J 2014 Appl. Phys. Lett. 104 093110 | Epitaxial growth of large-area bilayer graphene on Ru(0001)
[57] | Silva C C, Iannuzzi M, Duncan D A, Ryan P T P, Clarke K T, Kuchle J T, Cai J Q, Jolie W, Schlueter C, Lee T L, and Busse C 2018 J. Phys. Chem. C 122 18554 | Valleys and Hills of Graphene on Ru(0001)