Bayesian Optimization for Wavefront Sensing and Error Correction

Funds: Supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304100 and 2016YFA0302700), the National Natural Science Foundation of China (Grant Nos. 11874343, 61327901, 11774335, 11474270, 11734015, and 11821404).
  • Received Date: February 20, 2021
  • Published Date: May 31, 2021
  • Algorithms for wavefront sensing and error correction from intensity attract great concern in many fields. Here we propose Bayesian optimization to retrieve phase and demonstrate its performance in simulation and experiment. For small aberration, this method demonstrates a convergence process with high accuracy of phase sensing, which is also verified experimentally. For large aberration, Bayesian optimization is shown to be insensitive to the initial phase while maintaining high accuracy. The approach's merits of high accuracy and robustness make it promising in being applied in optical systems with static aberration such as AMO experiments, optical testing shops, and electron or optical microscopes.
  • Article Text

  • [1]
    Wilding D, Pozzi P, Soloviev O, Vdovin G, and Verhaegen M 2016 Opt. Express 24 24896 doi: 10.1364/OE.24.024896

    CrossRef Google Scholar

    [2]
    Tao X, Fernandez B, Azucena O, Fu M, and Garcia D 2011 Opt. Lett. 36 1062 doi: 10.1364/OL.36.001062

    CrossRef Google Scholar

    [3]
    Engler B, Weddell S, and Clare R 2017 International Conference on Image and Vision Computing New Zealand IVCNZ, Christchurch, New Zealand, 4–6 December 2017, pp 1–7 doi: 10.1109/IVCNZ.2017.8402471

    CrossRef Google Scholar

    [4]
    Andersen T, Owner-Petersen M, and Enmark A 2019 Opt. Lett. 44 4618 doi: 10.1364/OL.44.004618

    CrossRef Google Scholar

    [5]
    Yoon J W, Jeon C, Shin J, Lee S K, and Lee H W 2019 Opt. Express 27 20412 doi: 10.1364/OE.27.020412

    CrossRef Google Scholar

    [6]
    Kudryashov A, Samarkin V, Alexandrov A, Rukosuev A, and Zavalova V 2005 Adaptive Optics for Industry and Medicine Berlin: Springer p 237

    Google Scholar

    [7]
    Zhao T, Deng L, Wang W, Elson D S, and Su L 2018 Opt. Express 26 20368 doi: 10.1364/OE.26.020368

    CrossRef Google Scholar

    [8]
    Zupancic P, Preiss P M, Ma R, Lukin A, and Tai M E 2016 Opt. Express 24 13881 doi: 10.1364/OE.24.013881

    CrossRef Google Scholar

    [9]
    Platt B C and Shack R 2001 J. Refractive Surg. 17 S573 doi: 10.3928/1081-597X-20010901-13

    CrossRef Google Scholar

    [10]
    Fienup J R 1993 Appl. Opt. 32 1737 doi: 10.1364/AO.32.001737

    CrossRef Google Scholar

    [11]
    Song H, Fraanje R, Schitter G, Kroese H, and Vdovin G 2010 Opt. Express 18 24070 doi: 10.1364/OE.18.024070

    CrossRef Google Scholar

    [12]
    Fienup J R 1982 Appl. Opt. 21 2758 doi: 10.1364/AO.21.002758

    CrossRef Google Scholar

    [13]
    Zhu W, Chen L, Gu C, Wan J, and Zheng D 2015 Appl. Opt. 54 6155 doi: 10.1364/AO.54.006155

    CrossRef Google Scholar

    [14]
    Wang J, Léger J F, Binding J, Boccara A C, and Gigan S 2012 Biomed. Opt. Express 3 2510 doi: 10.1364/BOE.3.002510

    CrossRef Google Scholar

    [15]
    Carrara D A, Thelen B J, and Paxman R G 2000 Proc. SPIE 4123 56 doi: 10.1117/12.409286

    CrossRef Google Scholar

    [16]
    Thelen B J, Paxman R G, Carrara D A, and Seldin J H 2009 J. Opt. Soc. Am. A 26 206 doi: 10.1364/JOSAA.26.000206

    CrossRef Google Scholar

    [17]
    Paine S W and Fienup J R 2018 Opt. Lett. 43 1235 doi: 10.1364/OL.43.001235

    CrossRef Google Scholar

    [18]
    Xu Y, He D, Wang Q, Guo H, and Li Q 2019 Sensors 19 doi: 10.3390/s19010019

    CrossRef Google Scholar

    [19]
    Nishizaki Y, Valdivia M, Horisaki R, Kitaguchi K, and Saito M 2019 Opt. Express 27 240 doi: 10.1364/OE.27.000240

    CrossRef Google Scholar

    [20]
    Allan G, Kang I, Douglas E S, Barbastathis G, and Cahoy K 2020 Opt. Express 28 26267 doi: 10.1364/OE.397790

    CrossRef Google Scholar

    [21]
    Frazier P I 2018 arXiv:1807.02811 [stat.ML]

    Google Scholar

    [22]
    Snoek J, Larochelle H, and Adams R P 2012 Advances in Neural Information Processing Systems 25 Curran Associates, Inc. p 2951

    Google Scholar

    [23]
    Calandra R, Seyfarth A, Peters J, and Deisenroth M P 2016 Ann. Math. Artificial Intell. 76 5 doi: 10.1007/s10472-015-9463-9

    CrossRef Google Scholar

    [24]
    Ekström A, Forssén C, Dimitrakakis C, Dubhashi D, and Johansson H T 2019 J. Phys. G 46 095101 doi: 10.1088/1361-6471/ab2b14

    CrossRef Google Scholar

    [25]
    Ross T S 2009 Appl. Opt. 48 1812 doi: 10.1364/AO.48.001812

    CrossRef Google Scholar

    [26]
    Shahriari B, Swersky K, Wang Z, Adams R P, and de Freitas N 2016 Proc. IEEE 104 148 doi: 10.1109/JPROC.2015.2494218

    CrossRef Google Scholar

    [27]
    Snoek J, Larochelle H, and Adams R P 2012 Proc. 25th International Conference on Neural Information Processing Systems Curran Associates Inc. vol 2 p 2951

    Google Scholar

    [28]
    https://github.com/fmfn/BayesianOptimization

    Google Scholar

    [29]
    Unterhorst H A and Rubin A 2015 Afr. Vision Eye Health 74 6 doi: 10.4102/aveh.v74i1.21

    CrossRef Google Scholar

    [30]
    Delabie T, Schutter J D, and Vandenbussche B 2014 J. Astronaut. Sci. 61 60 doi: 10.1007/s40295-015-0034-4

    CrossRef Google Scholar

    [31]
    Lee W H 1974 Appl. Opt. 13 1677 doi: 10.1364/AO.13.001677

    CrossRef Google Scholar

Catalog

    Article views (259) PDF downloads (317) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return