[1] | Aumayr F, Ueda K, Sokell E, Schippers S, Sadeghpour H, Merkt F D R, Gallagher T F, Dunning F B, Scheier P, Echt O, Kirchner T, Fritzsche S, Surzhykov A, Ma X, Rivarola R, Fojon O, Tribedi L, Lamour E, Crespo L U J R, Litvinov Y A, Shabaev V, Cederquist H, Zettergren H, Schleberger M, Wilhelm R A, Azuma T, Boduch P, Schmidt H T, and Stöhlker T 2019 J. Phys. B 52 171003 | Roadmap on photonic, electronic and atomic collision physics: III. Heavy particles: with zero to relativistic speeds
[2] | Tolstikhina I, Imai M, Winckler N, and Shevelko V 2018 Basic Atomic Interactions of Accelerated Heavy Ions in Matter (Springer Series on Atomic, Optical and Plasma Physics) (Berlin: Springer) |
[3] | Isler R C 1994 Plasma Phys. Control. Fusion 36 171 | An overview of charge-exchange spectroscopy as a plasma diagnostic
[4] | Niemann H B, Atreya S K, Bauer S J, Carignan G R, Demick J E, Frost R L, Gautier D, Haberman J A, Harpold D N, Hunten D M, Israel G, Lunine J I, Kasprzak W T, Owen T C, Paulkovich M, Raulin F, Raaen E, and Way S H 2005 Nature 438 779 | The abundances of constituents of Titan's atmosphere from the GCMS instrument on the Huygens probe
[5] | Lisse C M, Dennerl K, Englhauser J, Harden M, Marshall F E, Mumma M J, Petre R, Pye J P, Ricketts M J, Schmitt J, TrCumper J, and West R G 1996 Science 274 205 | Discovery of X-ray and Extreme Ultraviolet Emission from Comet C/Hyakutake 1996 B2
[6] | Liang G Y, Peng Y G, Li R, Wu Y, and Wang J G 2020 Chin. Phys. Lett. 37 123101 | Molecular Opacity Calculations for Lithium Hydride at Low Temperature
[7] | Amaldi U and Kraft G 2005 Rep. Prog. Phys. 68 1861 | Radiotherapy with beams of carbon ions
[8] | Matthew B, Tom K, and Engel E 2017 Phys. Rev. A 96 032708 | Time-dependent spin-density-functional-theory description of -He collisions
[9] | Ullrich J, Moshammer R, Dörner R, Jagutzki O, Mergel V, Böcking H S, and Spielberger L 1997 J. Phys. B 30 2917 | Recoil-ion momentum spectroscopy
[10] | Ermolaev A M 1990 Phys. Lett. A 149 151 | Antiproton and proton interactions with atomic hydrogen at impact energies from 30 keV to 5 MeV lab
[11] | Toshima N 1993 Phys. Lett. A 175 133 | Charge asymmetry of ionization cross sections of atomic hydrogen by antiproton and proton impact
[12] | Kirchner T, Gulyás L, Lüdde H J, Henne A, Engel E, and Dreizler R M 1997 Phys. Rev. Lett. 79 1658 | Electronic Exchange Effects in and Collisions
[13] | Lüde HJ, Horbatsch M, Henne A, and Dreizler R M 1990 Phys. Lett. A 145 173 | Quantum mechanical description of recoil ion production in C6+ +Ne collisions
[14] | Fainstein P D, Ponce V H, and Rivarola R D 1988 J. Phys. B 21 287 | A theoretical model for ionisation in ion-atom collisions. Application for the impact of multicharged projectiles on helium
[15] | Schenk G and Kirchner T 2015 Phys. Rev. A 91 052712 | Multiple ionization of neon atoms in collisions with bare and dressed ions: A mean-field description considering target response
[16] | Kirchner T and Horbatsch M 2001 Phys. Rev. A 63 062718 | Nonperturbative calculation of projectile-electron loss, target ionization, and capture in collisions
[17] | Kirchner T, Horbatsch M, and Lüdde H J 2004 J. Phys. B 37 2379 | Coupled mean-field description of electron removal processes in He + –Ne and He + –Ar collisions
[18] | Fritsch W and Lin C D 1991 Phys. Rep. 202 1 | The semiclassical close-coupling description of atomic collisions: Recent developments and results
[19] | Zapukhlyak M, Kirchner T, Lüdde H J, Knoop S, Morgenstern R, and Hoekstra R 2005 J. Phys. B 38 2353 | Inner- and outer-shell electron dynamics in proton collisions with sodium atoms
[20] | Imai T W, Kimura M, Gu J P, Hirsch G, Buenker R J, Wang J G, Stancil P C, and Pichl L 2003 Phys. Rev. A 68 012716 | Ab initio study of one- and two-electron transfer processes in collisions of with He at low to intermediate energies
[21] | Wang K, Wang X X, Qu Y Z, Liu C H, Liu L, Wu Y, and Buenker R J 2020 Chin. Phys. Lett. 37 023401 | Single- and Double-Electron Capture Processes in Low-Energy Collisions of N 4+ Ions with He *
[22] | Gao J W, Wu Y, Wang J G, Sisourat N, and Dubois A 2018 Phys. Rev. A 97 052709 | State-selective electron transfer in collisions at intermediate energies
[23] | Runge E and Gross E K U 1984 Phys. Rev. Lett. 52 997 | Density-Functional Theory for Time-Dependent Systems
[24] | Ullrich C A 2012 Time-Dependent Density-Functional Theory: Concepts and Applications (Oxford: Oxford University Press) |
[25] | Wang F, Hong X, Wang J, and Kim K S 2011 J. Chem. Phys. 134 154308 | Coordinate space translation technique for simulation of electronic process in the ion–atom collision
[26] | Hong X, Wang F, Wu Y, Gou B, and Wang J 2016 Phys. Rev. A 93 062706 | collisions studied by time-dependent density-functional theory combined with the molecular dynamics method
[27] | Bi G, Kang J, and Wang L W 2017 Phys. Chem. Chem. Phys. 19 9053 | High velocity proton collision with liquid lithium: a time dependent density functional theory study
[28] | Wang Z P, Zhang F S, Xu X F, and Qian C Y 2020 Chin. Phys. B 29 023401 | Theoretical investigations of collision dynamics of cytosine by low-energy (150–1000 eV) proton impact
[29] | Thierry L, Katia C, Holtzman J, and Hubeny I 2008 Astrophys. J. 678 1342 | Argon Abundances in the Solar Neighborhood: Non‐LTE Analysis of Orion Association B‐Type Stars1
[30] | Deutsch H, Becker K, Grum-Grzhimailo A N, Bartschat K, Summers H, Probst M, Matt-Leubner S, and Märk T D 2004 Int. J. Mass Spectrom. 233 39 | Calculated cross sections for the electron-impact ionization of excited argon atoms using the DM formalism
[31] | Ton-That D and Flannery M R 1977 Phys. Rev. A 15 517 | Cross sections for ionization of metastable rare-gas atoms (Ne*, Ar*, Kr*, Xe*) and of metastable *, CO* molecules by electron impact
[32] | Zhu X M and Pu Y K 2010 J. Phys. D 43 403001 | Optical emission spectroscopy in low-temperature plasmas containing argon and nitrogen: determination of the electron temperature and density by the line-ratio method
[33] | Pivovar L I, Novikov M T, and Dolgov A S 1966 Sov. Phys.-JETP 23 357 |
[34] | DuBois R D, Santos A C F, Olson R E, Stöhlker T, Bosch F, Bräuning-Demian A, Gumberidze A, Hagmann S, Kozhuharov C, Mann R, Muthig A O, Spillmann U, Tachenov S, Barth W, Dahl L, Franzke B, Glatz J, Gröning L, Richter S, Wilms D, Krämer A, Ullmann K, and Jagutzki O 2003 Phys. Rev. A 68 042701 | Electron loss from 0.74- and 1.4-MeV/u low-charge-state argon and xenon ions colliding with neon, nitrogen, and argon
[35] | Olson R E, Watson R L, Horvat V, and Zaharakis K E 2002 J. Phys. B 35 1893 | Projectile and target ionization in MeV u -1 collisions of Xe ions with N 2
[36] | Olson R E, Watson R L, Horvat V, Perumal A N, Peng Y, and Stöhlker T 2004 J. Phys. B 37 4539 | Projectile electron loss and capture in MeV/u collisions of U 28+ with H 2 , N 2 and Ar
[37] | Shevelko V P, Kato D, Litsarev M S, and Tawara H 2010 J. Phys. B 43 215202 | The energy-deposition model: electron loss of heavy ions in collisions with neutral atoms at low and intermediate energies
[38] | Ullrich C A, Reinhard P G, and Suraud E 2000 Phys. Rev. A 62 053202 | Simplified implementation of self-interaction correction in sodium clusters
[39] | Calvayrac F, Reinhard P G, Suraud E, and Ullrich C A 2000 Phys. Rep. 337 493 | Nonlinear electron dynamics in metal clusters
[40] | Maitra N T 2016 J. Chem. Phys. 144 220901 | Perspective: Fundamental aspects of time-dependent density functional theory
[41] | Reinhard P G and Suraud E 2003 Introduction to Cluster Dynamics (New York: Wiley) |
[42] | Andrade X, Alberdi-Rodriguez J, Strubbe D A, Oliveira M J, Nogueira F, Castro A, Muguerza J, Arruabarrena A, Louie S G, Aspuru-Guzik A, Rubio A, and Marques M A 2012 J. Phys.: Condens. Matter 24 233202 | Time-dependent density-functional theory in massively parallel computer architectures: the octopus project
[43] | Tavernelli I, Gaigeot M P, Vuilleumier R, Stia C, Herve D P M A, and Politis M F 2008 ChemPhysChem 9 2099 | Time-Dependent Density Functional Theory Molecular Dynamics Simulations of Liquid Water Radiolysis
[44] | Avendaño-Franco G, Piraux B, Grüning M, and Gonze X 2012 Theor. Chem. Acc. 131 1289 | Time-dependent density functional theory study of charge transfer in collisions
[45] | Yu W, Zhang Y, Zhang F S, Hutton R, Zou Y, Gao C Z, and Wei B 2018 J. Phys. B 51 035204 | Collision dynamics of H + + N 2 at low energies based on time-dependent density-functional theory
[46] | Yu W, Gao C Z, Zhang Y, Zhang F S, Hutton R, Zou Y, and Wei B 2018 Phys. Rev. A 97 032706 | Collision cross sections of by impact at keV energies within time-dependent density-functional theory
[47] | Yu W, Gao C Z, Jiang T, Zou Y, Wang J G, Wu Y, and Wei B 2019 J. Chem. Phys. 150 124304 | A theoretical study of Ar 8+ -acetylene collisions at 1.2 MeV: Ionization and dissociation dynamics
[48] | Bates D R and McCarroll R 1958 Proc. R. Soc. London Ser. A 245 175 | Electron capture in slow collisions
[49] | Vignale G 1995 Phys. Rev. Lett. 74 3233 | Center of Mass and Relative Motion in Time Dependent Density Functional Theory
[50] | Yu W, Gao C Z, Sato S A, Castro A, Rubio A, and Wei B 2021 Phys. Rev. A 103 032816 | Single and double charge transfer in the collision within time-dependent density-functional theory
[51] | Castro A, Appel H, Oliveira M, Rozzi C A, Andrade X, Lorenzen F, Marques M A L, Gross E K U, and Rubio A 2006 Physica Status Solidi (b) 243 2465 | octopus: a tool for the application of time-dependent density functional theory
[52] | Wang Z, Li S S, and Wang L W 2015 Phys. Rev. Lett. 114 063004 | Efficient Real-Time Time-Dependent Density Functional Theory Method and its Application to a Collision of an Ion with a 2D Material
[53] | Marques M A L, Castro A, Bertsch G F, and Rubioa A 2003 Comput. Phys. Commun. 151 60 | octopus: a first-principles tool for excited electron–ion dynamics
[54] | Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 | Self-interaction correction to density-functional approximations for many-electron systems
[55] | Schlipf M and Gygi F 2015 Comput. Phys. Commun. 196 36 | Optimization algorithm for the generation of ONCV pseudopotentials
[56] | Gomez P A, Marques M A L, Rubio A, and Castro A 2018 J. Chem. Theory Comput. 14 3040 | Propagators for the Time-Dependent Kohn–Sham Equations: Multistep, Runge–Kutta, Exponential Runge–Kutta, and Commutator Free Magnus Methods
[57] | Castro A, Marques M A L, and Rubio A 2004 J. Chem. Phys. 121 3425 | Propagators for the time-dependent Kohn–Sham equations
[58] | Kołakowska A, Pindzola M S, Robicheaux F, Schultz D R, and Wells J C 1998 Phys. Rev. A 58 2872 | Excitation and charge transfer in proton-hydrogen collisions
[59] | Wittkower A B and Gilbody H B 1967 Proc. Phys. Soc 90 353 | A study of the charge neutralization of fast Ne + , Ar + and Kr + ions during passage through gaseous targets