[1] | Bedaque P F and van Kolck U 2002 Annu. Rev. Nucl. Part. Sci. 52 339 | E FFECTIVE F IELD T HEORY FOR F EW -N UCLEON S YSTEMS
[2] | Epelbaum E, Hammer H W, and Meißner U G 2009 Rev. Mod. Phys. 81 1773 | Modern theory of nuclear forces
[3] | Machleidt R and Entem D R 2011 Phys. Rep. 503 1 | Chiral effective field theory and nuclear forces
[4] | Epelbaum E and Meißner U G 2012 Annu. Rev. Nucl. Part. Sci. 62 159 | Chiral Dynamics of Few- and Many-Nucleon Systems
[5] | Weinberg S 1979 Physica A 96 327 | Phenomenological Lagrangians
[6] | Weinberg S 1990 Phys. Lett. B 251 288 | Nuclear forces from chiral lagrangians
[7] | Weinberg S 1991 Nucl. Phys. B 363 3 | Effective chiral lagrangians for nucleon-pion interactions and nuclear forces
[8] | Entem D R and Machleidt R 2003 Phys. Rev. C 68 041001 | Accurate charge-dependent nucleon-nucleon potential at fourth order of chiral perturbation theory
[9] | Epelbaum E, Glockle W, and Meißner U G 2005 Nucl. Phys. A 747 362 | The two-nucleon system at next-to-next-to-next-to-leading order
[10] | Epelbaum E, Krebs H, Lee D, and Meißner U G 2011 Phys. Rev. Lett. 106 192501 | Ab Initio Calculation of the Hoyle State
[11] | Tews I, Krüger T, Hebeler K, and Schwenk A 2013 Phys. Rev. Lett. 110 032504 | Neutron Matter at Next-to-Next-to-Next-to-Leading Order in Chiral Effective Field Theory
[12] | Epelbaum E, Krebs H, Lähde T A, Lee D, and Meißner U G 2013 Phys. Rev. Lett. 110 112502 | Viability of Carbon-Based Life as a Function of the Light Quark Mass
[13] | Hergert H, Bogner S K, Binder S, Calci A, and Langhammer J 2013 Phys. Rev. C 87 034307 | In-medium similarity renormalization group with chiral two- plus three-nucleon interactions
[14] | Hergert H, Binder S, Calci A, Langhammer J, and Roth R 2013 Phys. Rev. Lett. 110 242501 | Ab Initio Calculations of Even Oxygen Isotopes with Chiral Two-Plus-Three-Nucleon Interactions
[15] | Epelbaum E, Krebs H, Lähde T A, Lee D, and Meißner U G 2014 Phys. Rev. Lett. 112 102501 | Ab Initio Calculation of the Spectrum and Structure of
[16] | Jansen G R, Engel J, Hagen G, Navratil P, and Signoracci A 2014 Phys. Rev. Lett. 113 142502 | Ab Initio Coupled-Cluster Effective Interactions for the Shell Model: Application to Neutron-Rich Oxygen and Carbon Isotopes
[17] | Bogner S K, Hergert H, Holt J D, Schwenk A, and Binder S 2014 Phys. Rev. Lett. 113 142501 | Nonperturbative Shell-Model Interactions from the In-Medium Similarity Renormalization Group
[18] | Lynn J E, Carlson J, Epelbaum E, Gandolfi S, and Gezerlis A 2014 Phys. Rev. Lett. 113 192501 | Quantum Monte Carlo Calculations of Light Nuclei Using Chiral Potentials
[19] | Hagen G et al. 2016 Nat. Phys. 12 186 | Neutron and weak-charge distributions of the 48Ca nucleus
[20] | Elhatisari S, Lee D, Rupak G, Epelbaum E, and Krebs H 2015 Nature 528 111 | Ab initio alpha–alpha scattering
[21] | Lapoux V, Somà V, Barbieri C, Hergert H, and Holt J D 2016 Phys. Rev. Lett. 117 052501 | Radii and Binding Energies in Oxygen Isotopes: A Challenge for Nuclear Forces
[22] | Elhatisari S, Epelbaum E, Krebs H, Lähde T A, and Lee D 2017 Phys. Rev. Lett. 119 222505 | Ab initio Calculations of the Isotopic Dependence of Nuclear Clustering
[23] | Epelbaum E, Krebs H, and Meißner U G 2015 Phys. Rev. Lett. 115 122301 | Precision Nucleon-Nucleon Potential at Fifth Order in the Chiral Expansion
[24] | Reinert P, Krebs H, and Epelbaum E 2018 Eur. Phys. J. A 54 86 | Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order
[25] | Entem D R, Kaiser N, Machleidt R, and Nosyk Y 2015 Phys. Rev. C 91 014002 | Peripheral nucleon-nucleon scattering at fifth order of chiral perturbation theory
[26] | Entem D R, Machleidt R, and Nosyk Y 2017 Phys. Rev. C 96 024004 | High-quality two-nucleon potentials up to fifth order of the chiral expansion
[27] | Stoks V G J, Klomp R A M, Terheggen C P F, and de Swart J J 1994 Phys. Rev. C 49 2950 | Construction of high-quality NN potential models
[28] | Wiringa R B, Stoks V G J, and Schiavilla R 1995 Phys. Rev. C 51 38 | Accurate nucleon-nucleon potential with charge-independence breaking
[29] | Machleidt R 2001 Phys. Rev. C 63 024001 | High-precision, charge-dependent Bonn nucleon-nucleon potential
[30] | 2016 International Review of Nuclear Physics, in Relativistic Density Functional for Nuclear Structure (Singapore: World Scientific) vol 10 |
[31] | Geng L S, Martin C J, Alvarez-Ruso L, and Vicente V M J 2008 Phys. Rev. Lett. 101 222002 | Leading SU(3)-Breaking Corrections to the Baryon Magnetic Moments in Chiral Perturbation Theory
[32] | Ren X L, Geng L S, Martin C J, Meng J, and Toki H 2012 J. High Energy Phys. 2012 73 | Octet baryon masses in next-to-next-to-next-to-leading order covariant baryon chiral perturbation theory
[33] | Ren X L, Geng L S, and Meng J 2015 Phys. Rev. D 91 051502 | Scalar strangeness content of the nucleon and baryon sigma terms
[34] | Altenbuchinger M, Geng L S, and Weise W 2014 Phys. Rev. D 89 014026 | Scattering lengths of Nambu-Goldstone bosons off mesons and dynamically generated heavy-light mesons
[35] | Geng L S 2013 Front. Phys. 8 328 | Recent development in SU(3) covariant baryon chiral perturbation theory
[36] | Ren X L, Li K W, Geng L S, Long B W, and Ring P 2018 Chin. Phys. C 42 014103 | Leading order relativistic chiral nucleon-nucleon interaction
[37] | Li K W, Ren X L, Geng L S, and Long B W 2018 Chin. Phys. C 42 014105 | Leading order relativistic hyperon-nucleon interactions in chiral effective field theory
[38] | Song J, Li K W, and Geng L S 2018 Phys. Rev. C 97 065201 | Strangeness hyperon-nucleon interactions: Chiral effective field theory versus lattice QCD
[39] | Li K W, Hyodo T, and Geng L S 2018 Phys. Rev. C 98 065203 | Strangeness baryon-baryon interactions in relativistic chiral effective field theory
[40] | Xiao Y, Geng L S, and Ren X L 2019 Phys. Rev. C 99 024004 | Covariant nucleon-nucleon contact Lagrangian up to order
[41] | Bai Q Q, Wang C X, Xiao Y, and Geng L S 2020 Phys. Lett. B 809 135745 | Pion-mass dependence of the nucleon-nucleon interaction
[42] | Xiao Y, Wang C X, Lu J X, and Geng L S 2020 Phys. Rev. C 102 054001 | Two-pion exchange contributions to the nucleon-nucleon interaction in covariant baryon chiral perturbation theory
[43] | Song J, Xiao Y, Liu Z W, Wang C X, and Li K W 2020 Phys. Rev. C 102 065208 | interaction in leading-order covariant chiral effective field theory
[44] | Liu Z W, Song J, Li K W, and Geng L S 2021 Phys. Rev. C 103 025201 | Strangeness and baryon-baryon interactions in relativistic chiral effective field theory
[45] | Brockmann R and Machleidt R 1990 Phys. Rev. C 42 1965 | Relativistic nuclear structure. I. Nuclear matter
[46] | Shen S, Hu J, Liang H, Meng J, and Ring P 2016 Chin. Phys. Lett. 33 102103 | Relativistic Brueckner—Hartree—Fock Theory for Finite Nuclei
[47] | Shen S, Liang H, Meng J, Ring P, and Zhang S 2017 Phys. Rev. C 96 014316 | Fully self-consistent relativistic Brueckner-Hartree-Fock theory for finite nuclei
[48] | Shen S, Liang H, Long W H, Meng J, and Ring P 2019 Prog. Part. Nucl. Phys. 109 103713 | Towards an ab initio covariant density functional theory for nuclear structure
[49] | Salpeter E E and Bethe H A 1951 Phys. Rev. 84 1232 | A Relativistic Equation for Bound-State Problems
[50] | Kadyshevsky V G 1968 Nucl. Phys. B 6 125 | Quasipotential type equation for the relativistic scattering amplitude
[51] | Erkelenz K 1974 Phys. Rep. 13 191 | Current status of the relativistic two-nucleon one boson exchange potential
[52] | Ueda T and Green A E S 1968 Phys. Rev. 174 1304 | Realistic One-Boson-Exchange Potentials
[53] | Machleidt R, Holinde K, and Elster C 1987 Phys. Rept. 149 1 | The bonn meson-exchange model for the nucleon—nucleon interaction
[54] | Jackson A D, Riska D O, and Verwest B 1975 Nucl. Phys. A 249 397 | Meson exchange model for the nucleon-nucleon interaction
[55] | Holinde K and Machleidt R 1976 Nucl. Phys. A 256 479 | OBEP and eikonal form factor
[56] | Woloshyn R M and Jackson A D 1972 Nucl. Phys. A 185 131 | Relativistic eikonal approximation and low-energy nucleon-nucleon scattering
[57] | Nagels M M, Rijken T A, and de Swart J J 1978 Phys. Rev. D 17 768 | Low-energy nucleon-nucleon potential from Regge-pole theory
[58] | Ordonez C, Ray L, and van Kolck U 1994 Phys. Rev. Lett. 72 1982 | Nucleon-nucleon potential from an effective chiral Lagrangian
[59] | Epelbaum E, Gloeckle W, and Meißner U G 2000 Nucl. Phys. A 671 295 | Nuclear forces from chiral Lagrangians using the method of unitary transformation II: The two-nucleon system
[60] | Nogga A, Timmermans R G E, and van Kolck U 2005 Phys. Rev. C 72 054006 | Renormalization of one-pion exchange and power counting
[61] | Epelbaum E 2000 PhD Thesis (Julich, Forschungszentrum) |
[62] | Epelbaum E, Krebs H, and Meißner U G 2015 Eur. Phys. J. A 51 53 | Improved chiral nucleon-nucleon potential up to next-to-next-to-next-to-leading order
[63] | van Kolck U 1999 Nucl. Phys. A 645 273 | Effective field theory of short-range forces
[64] | Lutz M 2000 Nucl. Phys. A 677 241 | Effective chiral theory of nucleon–nucleon scattering
[65] | Sánchez S M, Yang C J, Long B, and van Kolck U 2018 Phys. Rev. C 97 024001 | Two-nucleon amplitude zero in chiral effective field theory
[66] | Olive K A 2016 Chin. Phys. C 40 100001 | Review of Particle Physics
[67] | Polinder H, Haidenbauer J, and Meißner U G 2006 Nucl. Phys. A 779 244 | Hyperon–nucleon interactions—a chiral effective field theory approach
[68] | Djukanovic D, Gegelia J, Scherer S, and Schindler M R 2007 Few-Body Syst. 41 141 | NN scattering in higher-derivative formulation of baryon chiral perturbation theory
[69] | Woloshyn R M and Jackson A D 1973 Nucl. Phys. B 64 269 | Comparison of three-dimensional relativistic scattering equations
[70] | Thompson R H 1970 Phys. Rev. D 1 110 | Three-Dimensional Bethe-Salpeter Equation Applied to the Nucleon-Nucleon Interaction
[71] | Blankenbecler R and Sugar R 1966 Phys. Rev. 142 1051 | Linear Integral Equations for Relativistic Multichannel Scattering
[72] | Wang C X, Geng L S, and Long B 2021 Chin. Phys. C 45 054101 | Renormalizability of leading order covariant chiral nucleon-nucleon interaction *
[73] | NN-OnLine, http://nn-online.org |
[74] | Pavon V M and Ruiz A E 2005 Phys. Rev. C 72 044007 | Low-energy NN scattering at next-to-next-to-next-to-next-to-leading order for partial waves with
[75] | Epelbaum E and Gegelia J 2012 Phys. Lett. B 716 338 | Weinbergʼs approach to nucleon–nucleon scattering revisited
[76] | Stoks V G J, Klomp R A M, Rentmeester M C M, and de Swart J J 1993 Phys. Rev. C 48 792 | Partial-wave analysis of all nucleon-nucleon scattering data below 350 MeV
[77] | Kaplan D B, Savage M J, and Wise M B 1998 Phys. Lett. B 424 390 | A new expansion for nucleon-nucleon interactions
[78] | Birse M C 2006 Phys. Rev. C 74 014003 | Power counting with one-pion exchange
[79] | Timoteo V S, Frederico T, Delfino A, and Tomio L 2005 Phys. Lett. B 621 109 | Recursive renormalization of the singlet one-pion-exchange plus point-like interactions
[80] | Birse M C 2007 Phys. Rev. C 76 034002 | Deconstructing triplet nucleon-nucleon scattering
[81] | Yang C J, Elster C, and Phillips D R 2008 Phys. Rev. C 77 014002 | Subtractive renormalization of the scattering amplitude at leading order in chiral effective theory
[82] | Yang C J, Elster C, and Phillips D R 2009 Phys. Rev. C 80 034002 | Subtractive renormalization of the chiral potentials up to next-to-next-to-leading order in higher partial waves
[83] | Yang C J, Elster C, and Phillips D R 2009 Phys. Rev. C 80 044002 | Subtractive renormalization of the interaction in chiral effective theory up to next-to-next-to-leading order: waves
[84] | Valderrama M P 2011 Phys. Rev. C 83 024003 | Perturbative renormalizability of chiral two-pion exchange in nucleon-nucleon scattering
[85] | Pavon V M 2011 Phys. Rev. C 84 064002 | Perturbative renormalizability of chiral two-pion exchange in nucleon-nucleon scattering: and waves
[86] | Long B and Yang C J 2011 Phys. Rev. C 84 057001 | Renormalizing chiral nuclear forces: A case study of
[87] | Long B and Yang C J 2012 Phys. Rev. C 86 024001 | Short-range nuclear forces in singlet channels
[88] | Epelbaum E, Gasparyan A M, Gegelia J, and Krebs H 2015 Eur. Phys. J. A 51 71 | 1S0 nucleon-nucleon scattering in the modified Weinberg approach
[89] | Baru V, Epelbaum E, Gegelia J, and Ren X L 2019 Phys. Lett. B 798 134987 | Towards baryon-baryon scattering in manifestly Lorentz-invariant formulation of SU(3) baryon chiral perturbation theory
[90] | Ren X L, Epelbaum E, and Gegelia J 2020 Phys. Rev. C 101 034001 | -nucleon scattering in baryon chiral perturbation theory