$t$ | $x_{\rm theorem}$ | $y_{\rm theorem}$ | $h_{\rm actual}$ | $h_{\rm actual}/h_{\rm theorem}$ | $u_x$ | $u_y$ |
---|---|---|---|---|---|---|
$-25.0$ | $6.00$ | $-25.00$ | $1.6000$ | $1.0000$ | $0.000 \times 10^{-10}$ | $0.00$ |
$-20.0$ | $6.00$ | $-20.00$ | $1.6000$ | $1.0000$ | $0.000 \times 10^{-10}$ | $0.00$ |
$-15.0$ | $6.00$ | $-15.00$ | $1.5999$ | $0.9999$ | $1.300 \times 10^ {-8}$ | $0.00$ |
$-20.0$ | $6.00$ | $-20.00$ | $1.5999$ | $0.9999$ | $2.481 \times 10^ {-6}$ | ${ 0.00}$ |
$-5.0$ | $6.00$ | $-5.00$ | $1.5999$ | $0.9999$ | ${ 3.680 \times 10^{-4}}$ | $0.00$ |
$5.0$ | $0.00$ | $5.00$ | $1.4443$ | $0.9271$ | ${ -4.399 \times 10^{-1}}$ | $0.00$ |
$10.0$ | $0.00$ | $10.00$ | $1.5989$ | $0.9993$ | $-3.993 \times 10^{-3}$ | ${0.00}$ |
$15.0$ | $0.00$ | $15.00$ | $1.5999$ | $0.9999$ | $-2.696 \times 10^{-5}$ | $0.00$ |
$20.0$ | $0.00$ | $20.00$ | $1.5999$ | $0.9999$ | $-1.817 \times 10^ {-7}$ | $0.00$ |
$25.0$ | $0.00$ | $25.00$ | $1.6000$ | $0.9999$ | $-1.224 \times 10^ {-9}$ | 0.00 |
[1] | Hirota R 1971 Phys. Rev. Lett. 27 1192 | Exact Solution of the Korteweg—de Vries Equation for Multiple Collisions of Solitons
[2] | Ma W X 2020 Opt. Quantum Electron. 52 1 | Frequency down-conversion of multiline CO laser into the THz range with ZnGeP2 crystal
[3] | Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551 | Novel soliton molecules and breather-positon on zero background for the complex modified KdV equation
[4] | Yuan F, Cheng Y, and He J S 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105027 | Degeneration of breathers in the Kadomttsev–Petviashvili I equation
[5] | Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501 | Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation
[6] | Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 | Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation *
[7] | Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501 | Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction
[8] | Liu J G 2018 Appl. Math. Lett. 86 36 | Lump-type solutions and interaction solutions for the (2+1)-dimensional generalized fifth-order KdV equation
[9] | Lü J Q, Bilige S, and Chaolu T 2018 Nonlinear Dyn. 91 1669 | The study of lump solution and interaction phenomenon to ( 2 + 1 )-dimensional generalized fifth-order KdV equation
[10] | Wang C J, Fang H, and Tang X X 2019 Nonlinear Dyn. 95 2943 | State transition of lump-type waves for the (2+1)-dimensional generalized KdV equation
[11] | Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425 | Special types of solitons and breather molecules for a (2+1)-dimensional fifth-order KdV equation
[12] | Wazwaz A M 2006 Appl. Math. Lett. 19 1162 | Solitons and periodic solutions for the fifth-order KdV equation
[13] | Chen A H 2010 Phys. Lett. A 374 2340 | Multi-kink solutions and soliton fission and fusion of Sharma–Tasso–Olver equation
[14] | Wang Y F, Tian B, and Jiang Y 2017 Appl. Math. Comput. 292 448 | Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids
[15] | Chen A H and Wang F F 2019 Phys. Scr. 94 055206 | Fissionable wave solutions, lump solutions and interactional solutions for the (2 + 1)-dimensional Sawada–Kotera equation
[16] | Dai C Q and Yu D G 2008 Int. J. Theor. Phys. 47 741 | Soliton Fusion and Fission Phenomena in the (2+1)-Dimensional Variable Coefficient Broer-Kaup System
[17] | Zhang Z, Qi Z Q, and Li B 2021 Appl. Math. Lett. 116 107004 | Fusion and fission phenomena for -dimensional fifth-order KdV system
[18] | Ma W X 2015 Phys. Lett. A 379 1975 | Lump solutions to the Kadomtsev–Petviashvili equation
[19] | Ma W X and Zhou Y 2018 J. Differ. Eq. 264 2633 | Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
[20] | Zhang Z, Yang X Y, Li W T, and Li B 2019 Chin. Phys. B 28 110201 | Trajectory equation of a lump before and after collision with line, lump, and breather waves for (2+1)-dimensional Kadomtsev–Petviashvili equation