Processing math: 100%

Space-Curved Resonant Line Solitons in a Generalized (2+1)-Dimensional Fifth-Order KdV System

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 11775121 and 11435005), and the K. C. Wong Magna Fund at Ningbo University.
  • Received Date: January 26, 2021
  • Published Date: May 31, 2021
  • On the basis of N-soliton solutions, space-curved resonant line solitons are derived via a new constraint proposed here, for a generalized (2+1)-dimensional fifth-order KdV system. The dynamic properties of these new resonant line solitons are studied in detail. We then discuss the interaction between a resonance line soliton and a lump wave in greater detail. Our results highlight the distinctions between the generalized (2+1)-dimensional fifth-order KdV system and the classical type.
  • Article Text

  • [1]
    Hirota R 1971 Phys. Rev. Lett. 27 1192 doi: 10.1103/PhysRevLett.27.1192

    CrossRef Google Scholar

    [2]
    Ma W X 2020 Opt. Quantum Electron. 52 1 doi: 10.1007/s11082-019-2116-1

    CrossRef Google Scholar

    [3]
    Zhang Z, Yang X Y, and Li B 2020 Nonlinear Dyn. 100 1551 doi: 10.1007/s11071-020-05570-1

    CrossRef Google Scholar

    [4]
    Yuan F, Cheng Y, and He J S 2020 Commun. Nonlinear Sci. Numer. Simul. 83 105027 doi: 10.1016/j.cnsns.2019.105027

    CrossRef Google Scholar

    [5]
    Zhang Z, Yang S X, and Li B 2019 Chin. Phys. Lett. 36 120501 doi: 10.1088/0256-307X/36/12/120501

    CrossRef Google Scholar

    [6]
    Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 doi: 10.1088/0256-307X/37/3/030501

    CrossRef Google Scholar

    [7]
    Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501 doi: 10.1088/0256-307X/37/4/040501

    CrossRef Google Scholar

    [8]
    Liu J G 2018 Appl. Math. Lett. 86 36 doi: 10.1016/j.aml.2018.06.011

    CrossRef Google Scholar

    [9]
    Lü J Q, Bilige S, and Chaolu T 2018 Nonlinear Dyn. 91 1669 doi: 10.1007/s11071-017-3972-5

    CrossRef Google Scholar

    [10]
    Wang C J, Fang H, and Tang X X 2019 Nonlinear Dyn. 95 2943 doi: 10.1007/s11071-018-04733-5

    CrossRef Google Scholar

    [11]
    Yan Z W and Lou S Y 2020 Commun. Nonlinear Sci. Numer. Simul. 91 105425 doi: 10.1016/j.cnsns.2020.105425

    CrossRef Google Scholar

    [12]
    Wazwaz A M 2006 Appl. Math. Lett. 19 1162 doi: 10.1016/j.aml.2005.07.014

    CrossRef Google Scholar

    [13]
    Chen A H 2010 Phys. Lett. A 374 2340 doi: 10.1016/j.physleta.2010.03.054

    CrossRef Google Scholar

    [14]
    Wang Y F, Tian B, and Jiang Y 2017 Appl. Math. Comput. 292 448 doi: 10.1016/j.amc.2016.07.025

    CrossRef Google Scholar

    [15]
    Chen A H and Wang F F 2019 Phys. Scr. 94 055206 doi: 10.1088/1402-4896/ab0056

    CrossRef Google Scholar

    [16]
    Dai C Q and Yu D G 2008 Int. J. Theor. Phys. 47 741 doi: 10.1007/s10773-007-9498-8

    CrossRef Google Scholar

    [17]
    Zhang Z, Qi Z Q, and Li B 2021 Appl. Math. Lett. 116 107004 doi: 10.1016/j.aml.2020.107004

    CrossRef Google Scholar

    [18]
    Ma W X 2015 Phys. Lett. A 379 1975 doi: 10.1016/j.physleta.2015.06.061

    CrossRef Google Scholar

    [19]
    Ma W X and Zhou Y 2018 J. Differ. Eq. 264 2633 doi: 10.1016/j.jde.2017.10.033

    CrossRef Google Scholar

    [20]
    Zhang Z, Yang X Y, Li W T, and Li B 2019 Chin. Phys. B 28 110201 doi: 10.1088/1674-1056/ab44a3

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(16)

    1. Bao, W., Xu, D.-X. Asymptotic analysis of resonance behaviors for the (2+1)-dimensional generalized fifth-order KdV equation via Hirota's bi-linear method. Physica Scripta, 2025, 100(1): 015224. DOI:10.1088/1402-4896/ad95f2
    2. Li, W., Chen, Y., Zhang, Z. et al. Solitons in the Fifth-Order KdV Equation with a Perturbation. Chinese Physics Letters, 2025, 42(1): 010202. DOI:10.1088/0256-307X/42/1/010202
    3. Li, Y., Yao, R., Lou, S. Novel nonlinear wave transitions and interactions for (2+1)-dimensional generalized fifth-order KdV equation. Communications in Theoretical Physics, 2024, 76(12): 125003. DOI:10.1088/1572-9494/ad70a2
    4. Zhao, Z., He, L. Space-curved resonant solitons and inelastic interaction solutions of a (2+1)-dimensional generalized KdV equation. Nonlinear Dynamics, 2024, 112(5): 3823-3833. DOI:10.1007/s11071-023-09223-x
    5. Chen, G.-H., Wang, H.-C., Deng, H.-M. et al. Vortex Quantum Droplets under Competing Nonlinearities. Chinese Physics Letters, 2024, 41(2): 020501. DOI:10.1088/0256-307X/41/2/020501
    6. Zhu, D., Zhu, X. Multi-Pseudo Peakons in the b-Family Fifth-Order Camassa-Holm Model. Chinese Physics Letters, 2023, 40(12): 120202. DOI:10.1088/0256-307X/40/12/120202
    7. Zhao, Z., Zhang, C., Feng, Y. et al. Space-curved resonant solitons and interaction solutions of the (2+1)-dimensional Ito equation. Applied Mathematics Letters, 2023. DOI:10.1016/j.aml.2023.108799
    8. Ding, C., Zhou, Q., Xu, S. et al. Nonautonomous Breather and Rogue Wave in Spinor Bose-Einstein Condensates with Space-Time Modulated Potentials. Chinese Physics Letters, 2023, 40(4): 040501. DOI:10.1088/0256-307X/40/4/040501
    9. Ma, H., Gao, Y., Deng, A. Nonlinear superposition of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation. Nonlinear Dynamics, 2023, 111(1): 619-632. DOI:10.1007/s11071-022-07827-3
    10. Zhao, Z., He, L. Multiple lump molecules and interaction solutions of the Kadomtsev-Petviashvili I equation. Communications in Theoretical Physics, 2022, 74(10): 105004. DOI:10.1088/1572-9494/ac839c
    11. Mao, J.-J., Tian, S.-F., Xu, T.-Z. et al. Inverse scattering transforms of the inhomogeneous fifth-order nonlinear Schrödinger equation with zero/nonzero boundary conditions. Communications in Theoretical Physics, 2022, 74(8): 085007. DOI:10.1088/1572-9494/ac679b
    12. Ma, H., Gao, Y., Deng, A. Fission and fusion solutions of the (2+1)-dimensional generalized Konopelchenko–Dubrovsky–Kaup–Kupershmidt equation: case of fluid mechanics and plasma physics. Nonlinear Dynamics, 2022, 108(4): 4123-4137. DOI:10.1007/s11071-022-07429-z
    13. Shi, K.-Z., Ren, B. Dynamics of mixed lump-soliton solutions to the (3+1)-dimensional Boiti–Leon–Manna–Pempinelli like equation. Partial Differential Equations in Applied Mathematics, 2022. DOI:10.1016/j.padiff.2022.100276
    14. Wei, P.-F., Long, C.-X., Zhu, C. et al. Soliton molecules, multi-breathers and hybrid solutions in (2+1)-dimensional Korteweg-de Vries-Sawada-Kotera-Ramani equation. Chaos, Solitons and Fractals, 2022. DOI:10.1016/j.chaos.2022.112062
    15. Zhou, Q., Zhong, Y., Triki, H. et al. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity. Chinese Physics Letters, 2022, 39(4): 044202. DOI:10.1088/0256-307X/39/4/044202
    16. Shi, K.-Z., Shen, S.-F., Ren, B. et al. Dynamics of mixed lump-soliton for an extended (2+1)-dimensional asymmetric Nizhnik-Novikov-Veselov equation. Communications in Theoretical Physics, 2022, 74(3): 035001. DOI:10.1088/1572-9494/ac53a1

    Other cited types(0)

Catalog

    Article views (299) PDF downloads (505) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return