[1] | Adams C C 1994 The Knot Book (New York: Freeman) |
[2] | Alexander J W and Briggs G B 1926 Ann. Math. 28 562 | On Types of Knotted Curves
[3] | Wasserman S A, Dungan J M, and Cozzarelli N R 1985 Science 229 171 | Discovery of a predicted DNA knot substantiates a model for site-specific recombination
[4] | Forgan R S, Sauvage J P, and Stoddart J F 2011 Chem. Rev. 111 5434 | Chemical Topology: Complex Molecular Knots, Links, and Entanglements
[5] | Wilczek F and Zee A 1983 Phys. Rev. Lett. 51 2250 | Linking Numbers, Spin, and Statistics of Solitons
[6] | Rovelli C and Smolin L 1988 Phys. Rev. Lett. 61 1155 | Knot Theory and Quantum Gravity
[7] | Yang C N and Ge M L 1989 Braid Group, Knot Theory and Statistical Mechanics (Singapore: World Scientific) |
[8] | Wu F Y 1992 Rev. Mod. Phys. 64 1099 | Knot theory and statistical mechanics
[9] | Atiyah M 1995 Rev. Mod. Phys. 67 977 | Quantum physics and the topology of knots
[10] | Katritch V, Bednar J, Michoud D, Scharein R G, Dubochet J, and Stasiak A 1996 Nature 384 142 | Geometry and physics of knots
[11] | Faddeev L and Niemi A J 1997 Nature 387 58 | Stable knot-like structures in classical field theory
[12] | Kauffman L H 2005 Rep. Prog. Phys. 68 2829 | The mathematics and physics of knots
[13] | Kleckner D and Irvine W T M 2013 Nat. Phys. 9 253 | Creation and dynamics of knotted vortices
[14] | Ren J R, Zhu T, and Duan Y S 2008 Chin. Phys. Lett. 25 353 | Topological Aspect of Knotted Vortex Filaments in Excitable Media
[15] | Kleckner D, Kauffman L H, and Irvine W T M 2016 Nat. Phys. 12 650 | How superfluid vortex knots untie
[16] | Leach J, Dennis M R, Courtial J, and Padgett M J 2004 Nature 432 165 | Knotted threads of darkness
[17] | Dennis M R, King R P, Jack B, O'Holleran K, and Padgett M J 2010 Nat. Phys. 6 118 | Isolated optical vortex knots
[18] | Taylor A J and Dennis M R 2016 Nat. Commun. 7 12346 | Vortex knots in tangled quantum eigenfunctions
[19] | Hall D S, Ray M W, Tiurev K, Ruokokoski E, Gheorghe A H, and Möttönen M 2016 Nat. Phys. 12 478 | Tying quantum knots
[20] | Sun X Q, Lian B, and Zhang S C 2017 Phys. Rev. Lett. 119 147001 | Double Helix Nodal Line Superconductor
[21] | Chang G, Xu S Y, Zhou X, Huang S M, Singh B, Wang B, Belopolski I, Yin J, Zhang S, Bansil A, Lin H, and Hasan M Z 2017 Phys. Rev. Lett. 119 156401 | Topological Hopf and Chain Link Semimetal States and Their Application to
[22] | Chen W, Lu H Z, and Hou J M 2017 Phys. Rev. B 96 041102(R) | Topological semimetals with a double-helix nodal link
[23] | Ezawa M 2017 Phys. Rev. B 96 041202(R) | Topological semimetals carrying arbitrary Hopf numbers: Fermi surface topologies of a Hopf link, Solomon's knot, trefoil knot, and other linked nodal varieties
[24] | Bi R, Yan Z, Lu L, and Wang Z 2017 Phys. Rev. B 96 201305(R) | Nodal-knot semimetals
[25] | Yan Z, Bi R, Shen H, Lu L, Zhang S C, and Wang Z 2017 Phys. Rev. B 96 041103(R) | Nodal-link semimetals
[26] | Chang P Y and Yee C H 2017 Phys. Rev. B 96 081114(R) | Weyl-link semimetals
[27] | Ackerman P J and Smalyukh I I 2017 Phys. Rev. X 7 011006 | Diversity of Knot Solitons in Liquid Crystals Manifested by Linking of Preimages in Torons and Hopfions
[28] | Deng D L, Wang S T, Shen C, and Duan L M 2013 Phys. Rev. B 88 201105(R) | Hopf insulators and their topologically protected surface states
[29] | Deng D L, Wang S T, Sun K, and Duan L M 2018 Chin. Phys. Lett. 35 013701 | Probe Knots and Hopf Insulators with Ultracold Atoms
[30] | Yan Q, Liu R, Yan Z, Liu B, Chen H, Wang Z, and Lu L 2018 Nat. Phys. 14 461 | Experimental discovery of nodal chains
[31] | Yang Z, Chiu C K, Fang C, and Hu J 2020 Phys. Rev. Lett. 124 186402 | Jones Polynomial and Knot Transitions in Hermitian and non-Hermitian Topological Semimetals
[32] | Yuan X X, He L, Wang S T, Deng D L, Wang F, Lian W Q, Wang X, Zhang C H, Zhang H L, Chang X Y, and Duan L M 2017 Chin. Phys. Lett. 34 060302 | Observation of Topological Links Associated with Hopf Insulators in a Solid-State Quantum Simulator
[33] | Yang Z and Hu J 2019 Phys. Rev. B 99 081102(R) | Non-Hermitian Hopf-link exceptional line semimetals
[34] | Carlström J and Bergholtz E J 2018 Phys. Rev. A 98 042114 | Exceptional links and twisted Fermi ribbons in non-Hermitian systems
[35] | Carlström J, Strälhammar M, Budich J C, and Bergholtz E J 2019 Phys. Rev. B 99 161115(R) | Knotted non-Hermitian metals
[36] | Lee C H, Li G, Liu Y, Tai T, Thomale R, and Zhang X 2018 arXiv:1812.02011 [cond-mat.mes-hall] | Tidal surface states as fingerprints of non-Hermitian nodal knot metals
[37] | Yang X M, Wu H C, Wang P, Jin L, and Song Z 2020 J. Phys. Commun. 4 095005 | Visualizing one-dimensional non-hermitian topological phases
[38] | Wu H C, Yang X M, Jin L, and Song Z 2020 Phys. Rev. B 102 161101(R) | Untying links through anti-parity-time-symmetric coupling
[39] | Hu H and Zhao E 2021 Phys. Rev. Lett. 126 010401 | Knots and Non-Hermitian Bloch Bands
[40] | Feynman R P 1949 Phys. Rev. 76 769 | Space-Time Approach to Quantum Electrodynamics
[41] | Zak J 1989 Phys. Rev. Lett. 62 2747 | Berry’s phase for energy bands in solids
[42] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 | Berry phase effects on electronic properties
[43] | Xu S, Zhou L, Wang X Y, Wang H, Lin J F, Zeng X Y, Cheng P, Weng H, and Xia T L 2020 Chin. Phys. Lett. 37 107504 | Quantum Oscillations and Electronic Structure in the Large-Chern-Number Topological Chiral Semimetal PtGa
[44] | Gong Y, Guo J, Li J, Zhu K, Liao M, Liu X, Zhang Q, Gu L, Tang L, Feng X, Zhang D, Li W, Song C, Wang L, Yu P, Chen X, Wang Y, Yao H, Duan W, Xu Y, Zhang S C, Ma X, Xue Q K, and He K 2019 Chin. Phys. Lett. 36 076801 | Experimental Realization of an Intrinsic Magnetic Topological Insulator *
[45] | Jiang G, Feng Y, Wu W, Li S, Bai Y, Li Y, Zhang Q, Gu L, Feng X, Zhang D, Song C, Wang L, Li W, Ma X C, Xue Q K, Wang Y, and He K 2018 Chin. Phys. Lett. 35 076802 | Quantum Anomalous Hall Multilayers Grown by Molecular Beam Epitaxy
[46] | Chen C, Liu Q, Zhang T Z, Li D, Shen P P, Dong X L, Zhao Z X, Zhang T, and Feng D L 2019 Chin. Phys. Lett. 36 057403 | Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li 0.84 Fe 0.16 )OHFeSe
[47] | Pei C, Xia Y, Wu J, Zhao Y, Gao L, Ying T, Gao B, Li N, Yang W, Zhang D, Gou H, Chen Y, Hosono H, Li G, and Qi Y 2020 Chin. Phys. Lett. 37 066401 | Pressure-Induced Topological and Structural Phase Transitions in an Antiferromagnetic Topological Insulator
[48] | Deng H X, Song Z G, Li S S, Wei S H, and Luo J W 2018 Chin. Phys. Lett. 35 057301 | Atomic-Ordering-Induced Quantum Phase Transition between Topological Crystalline Insulator and Z 2 Topological Insulator
[49] | Zhang G, Li C, and Song Z 2017 Sci. Rep. 7 8176 | Majorana charges, winding numbers and Chern numbers in quantum Ising models
[50] | Suzuki M 1971 Prog. Theor. Phys. 46 1337 | Relationship among Exactly Soluble Models of Critical Phenomena. I
[51] | Perk J H H 2017 arXiv:1710.03384 [cond-mat.stat-mech] | Onsager algebra and cluster XY-models in a transverse magnetic field
[52] | Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) |
[53] | Kitaev A Y 2001 Phys. Usp. 44 131 | Unpaired Majorana fermions in quantum wires
[54] | Niu Y, Chung S B, Hsu C H, Mandal I, Raghu S, and Chakravarty S 2012 Phys. Rev. B 85 035110 | Majorana zero modes in a quantum Ising chain with longer-ranged interactions
[55] | Alexander J W 1923 Trans. Am. Math. Soc. 25 173 | Invariant points of a surface transformation of given class
[56] | Verresen R, Jones N G, and Pollmann F 2018 Phys. Rev. Lett. 120 057001 | Topology and Edge Modes in Quantum Critical Chains
[57] | Ryu S, Schnyder A P, Furusaki A, and Ludwig A W W 2010 New J. Phys. 12 065010 | Topological insulators and superconductors: tenfold way and dimensional hierarchy