[1] | Josephson B D 1962 Phys. Rev. Lett. 1 251 | Possible new effects in superconductive tunnelling
[2] | Josephson B D 1974 Europhys. News 5 1 | The Discovery of Tunnelling Supercurrents
[3] | Feynman R P, Leighton R B, and Sands M 1965 Lectures on Physics (Berlin: Springer) vol iii |
[4] | Bloch F 1970 Phys. Rev. B 2 109 | Josephson Effect in a Superconducting Ring
[5] | Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10 230 | Probable Observation of the Josephson Superconducting Tunneling Effect
[6] | Büttiker M, Imry Y, and Landauer R 1983 Phys. Lett. A 96 365 | Josephson behavior in small normal one-dimensional rings
[7] | Sukhatme K, Mukharsky Y, Chui T, and Pearson D 2001 Nature 411 280 | Observation of the ideal Josephson effect in superfluid 4He
[8] | Avenel O and Varoquaux E 1988 Phys. Rev. Lett. 60 416 | Josephson effect and quantum phase slippage in superfluids
[9] | Albiez M, Gati R, Fölling J, Hunsmann S, and Cristiani M 2005 Phys. Rev. Lett. 95 010402 | Direct Observation of Tunneling and Nonlinear Self-Trapping in a Single Bosonic Josephson Junction
[10] | Levy S, Lahoud E, Shomroni I, and Steinhauer J 2007 Nature 449 579 | The a.c. and d.c. Josephson effects in a Bose–Einstein condensate
[11] | Cataliotti F, Burger S, Fort C, Maddaloni P, and Minardi F 2001 Science 293 843 | Josephson Junction Arrays with Bose-Einstein Condensates
[12] | Lagoudakis K, Pietka B, Wouters M, André R, and Deveaud-Plédran B 2010 Phys. Rev. Lett. 105 120403 | Coherent Oscillations in an Exciton-Polariton Josephson Junction
[13] | Abbarchi M, Amo A, Sala V, Solnyshkov D, and Flayac H 2013 Nat. Phys. 9 275 | Macroscopic quantum self-trapping and Josephson oscillations of exciton polaritons
[14] | Valtolina G, Burchianti A, Amico A, Neri E, and Xhani K 2015 Science 350 1505 | Josephson effect in fermionic superfluids across the BEC-BCS crossover
[15] | Zimmerman J and Silver A 1966 Phys. Rev. 141 367 | Macroscopic Quantum Interference Effects through Superconducting Point Contacts
[16] | Koch R, Umbach C, Clark G, Chaudhari P, and Laibowitz R 1987 Appl. Phys. Lett. 51 200 | Quantum interference devices made from superconducting oxide thin films
[17] | Fagaly R 2006 Rev. Sci. Instrum. 77 101101 | Superconducting quantum interference device instruments and applications
[18] | Ryu C, Blackburn P, Blinova A, and Boshier M 2013 Phys. Rev. Lett. 111 205301 | Experimental Realization of Josephson Junctions for an Atom SQUID
[19] | Gallop J 2003 Supercond. Sci. Technol. 16 1575 | SQUIDs: some limits to measurement
[20] | Ofek N, Petrenko A, Heeres R, Reinhold P, and Leghtas Z 2016 Nature 536 441 | Extending the lifetime of a quantum bit with error correction in superconducting circuits
[21] | Córcoles A D, Magesan E, Srinivasan S J, Cross A W, and Steffen M 2015 Nat. Commun. 6 6979 | Demonstration of a quantum error detection code using a square lattice of four superconducting qubits
[22] | Kelly J, Barends R, Fowler A G, Megrant A, and Jeffrey E 2015 Nature 519 66 | State preservation by repetitive error detection in a superconducting quantum circuit
[23] | Ozyuzer L, Koshelev A E, Kurter C, Gopalsami N, and Li Q 2007 Science 318 1291 | Emission of Coherent THz Radiation from Superconductors
[24] | Tachiki M, Iizuka M, Minami K, Tejima S, and Nakamura H 2005 Phys. Rev. B 71 134515 | Emission of continuous coherent terahertz waves with tunable frequency by intrinsic Josephson junctions
[25] | Shapiro S 1963 Phys. Rev. Lett. 11 80 | Josephson Currents in Superconducting Tunneling: The Effect of Microwaves and Other Observations
[26] | Kleiner R, Steinmeyer F, Kunkel G, and Müller P 1992 Phys. Rev. Lett. 68 2394 | Intrinsic Josephson effects in single crystals
[27] | Smerzi A, Fantoni S, Giovanazzi S, and Shenoy S 1997 Phys. Rev. Lett. 79 4950 | Quantum Coherent Atomic Tunneling between Two Trapped Bose-Einstein Condensates
[28] | Javanainen J 1986 Phys. Rev. Lett. 57 3164 | Oscillatory exchange of atoms between traps containing Bose condensates
[29] | Shin Y, Jo G B, Saba M, Pasquini T, and Ketterle W 2005 Phys. Rev. Lett. 95 170402 | Optical Weak Link between Two Spatially Separated Bose-Einstein Condensates
[30] | Zibold T, Nicklas E, Gross C, and Oberthaler M K 2010 Phys. Rev. Lett. 105 204101 | Classical Bifurcation at the Transition from Rabi to Josephson Dynamics
[31] | Chang M S, Qin Q, Zhang W, You L, and Chapman M S 2005 Nat. Phys. 1 111 | Coherent spinor dynamics in a spin-1 Bose condensate
[32] | Hou J, Luo X W, Sun K, Bersano T, and Gokhroo V 2018 Phys. Rev. Lett. 120 120401 | Momentum-Space Josephson Effects
[33] | Bersano T M, Hou J, Mossman S, Gokhroo V, and Luo X W 2019 Phys. Rev. A 99 051602 | Experimental realization of a long-lived striped Bose-Einstein condensate induced by momentum-space hopping
[34] | Gallem A, Mateo A M, Mayol R, and Guilleumas M 2016 New J. Phys. 18 015003 | Coherent quantum phase slip in two-component bosonic atomtronic circuits
[35] | Zapata I, Sols F, and Leggett A J 1998 Phys. Rev. A 57 R28 | Josephson effect between trapped Bose-Einstein condensates
[36] | Polo J, Ahufinger V, Hekking F W, and Minguzzi A 2018 Phys. Rev. Lett. 121 090404 | Damping of Josephson Oscillations in Strongly Correlated One-Dimensional Atomic Gases
[37] | Wang Y J, Anderson D Z, Bright V M, Cornell E A, and Diot Q 2005 Phys. Rev. Lett. 94 090405 | Atom Michelson Interferometer on a Chip Using a Bose-Einstein Condensate
[38] | Schumm T, Hofferberth S, Andersson L M, Wildermuth S, and Groth S 2005 Nat. Phys. 1 57 | Matter-wave interferometry in a double well on an atom chip
[39] | Pezzè L, Smerzi A, Oberthaler M K, Schmied R, and Treutlein P 2018 Rev. Mod. Phys. 90 035005 | Quantum metrology with nonclassical states of atomic ensembles
[40] | Zhai H 2015 Rep. Prog. Phys. 78 026001 | Degenerate quantum gases with spin–orbit coupling: a review
[41] | Dresselhaus G 1955 Phys. Rev. 100 580 | Spin-Orbit Coupling Effects in Zinc Blende Structures
[42] | Bychkov Y A and Rashba E I 1984 J. Phys. C 17 6039 | Oscillatory effects and the magnetic susceptibility of carriers in inversion layers
[43] | Liu X J, Borunda M F, Liu X, and Sinova J 2009 Phys. Rev. Lett. 102 046402 | Effect of Induced Spin-Orbit Coupling for Atoms via Laser Fields
[44] | Lin Y J, Compton R L, Perry A R, Phillips W D, and Porto J V 2009 Phys. Rev. Lett. 102 130401 | Bose-Einstein Condensate in a Uniform Light-Induced Vector Potential
[45] | Wang C, Gao C, Jian C M, and Zhai H 2010 Phys. Rev. Lett. 105 160403 | Spin-Orbit Coupled Spinor Bose-Einstein Condensates
[46] | Lin Y J, Jimenez-Garcia K, and Spielman I B 2011 Nature 471 83 | Spin?orbit-coupled Bose?Einstein condensates
[47] | Li Y, Martone G I, Pitaevskii L P, and Stringari S 2013 Phys. Rev. Lett. 110 235302 | Superstripes and the Excitation Spectrum of a Spin-Orbit-Coupled Bose-Einstein Condensate
[48] | Bao W and Cai Y 2015 SIAM J. Appl. Math. 75 492 | Ground States and Dynamics of Spin-Orbit-Coupled Bose–Einstein Condensates
[49] | Bhuvaneswari S, Nithyanandan K, and Muruganandam P 2018 J. Phys. Commun. 2 025008 | Spotlighting phase separation in Rashba spin-orbit coupled Bose–Einstein condensates in two dimensions
[50] | Jochim S, Bartenstein M, Altmeyer A, Hendl G, and Riedl S 2003 Science 302 2101 | Bose-Einstein Condensation of Molecules
[51] | Bradley C C, Sackett C, Tollett J, and Hulet R G 1995 Phys. Rev. Lett. 75 1687 | Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions
[52] | Zhai H 2012 Int. J. Mod. Phys. B 26 1230001 | SPIN-ORBIT COUPLED QUANTUM GASES
[53] | Zheng W, Yu Z Q, Cui X, and Zhai H 2013 J. Phys. B 46 134007 | Properties of Bose gases with the Raman-induced spin–orbit coupling
[54] | Ramachandhran B, Opanchuk B, Liu X J, Pu H, and Drummond P D 2012 Phys. Rev. A 85 023606 | Half-quantum vortex state in a spin-orbit-coupled Bose-Einstein condensate
[55] | Hu H, Ramachandhran B, Pu H, and Liu X J 2012 Phys. Rev. Lett. 108 010402 | Spin-Orbit Coupled Weakly Interacting Bose-Einstein Condensates in Harmonic Traps
[56] | Wu C J, Ian M S, and Zhou X F 2011 Chin. Phys. Lett. 28 097102 | Unconventional Bose—Einstein Condensations from Spin-Orbit Coupling
[57] | Milburn G, Corney J, Wright E M, and Walls D 1997 Phys. Rev. A 55 4318 | Quantum dynamics of an atomic Bose-Einstein condensate in a double-well potential
[58] | Shin Y, Saba M, Pasquini T, Ketterle W, and Pritchard D 2004 Phys. Rev. Lett. 92 050405 | Atom Interferometry with Bose-Einstein Condensates in a Double-Well Potential
[59] | Müstecaplıoğlu Zhang W X and You L 2007 Phys. Rev. A 75 023605 | Quantum dynamics of a spin-1 condensate in a double-well potential
[60] | Jin D, Ensher J, Matthews M, Wieman C, and Cornell E A 1996 Phys. Rev. Lett. 77 420 | Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas
[61] | Mewes M O, Andrews M, Van Druten N, Kurn D, and Durfee D 1996 Phys. Rev. Lett. 77 988 | Collective Excitations of a Bose-Einstein Condensate in a Magnetic Trap
[62] | Edwards M, Ruprecht P, Burnett K, Dodd R, and Clark C W 1996 Phys. Rev. Lett. 77 1671 | Collective Excitations of Atomic Bose-Einstein Condensates
[63] | Mewes M O, Andrews M, Van Druten N, Kurn D, and Durfee D 1996 Phys. Rev. Lett. 77 416 | Bose-Einstein Condensation in a Tightly Confining dc Magnetic Trap
[64] | Rauer B, Grišins P, Mazets I E, Schweigler T, and Rohringer W 2016 Phys. Rev. Lett. 116 030402 | Cooling of a One-Dimensional Bose Gas
[65] | Pigneur M, Berrada T, Bonneau M, Schumm T, and Demler E 2018 Phys. Rev. Lett. 120 173601 | Relaxation to a Phase-Locked Equilibrium State in a One-Dimensional Bosonic Josephson Junction
[66] | The integrals for these three parameters are: $V_{m} = \int g\big(|\varphi_{m-2\uparrow}|^{4}+|\varphi_{m-2\downarrow}|^{4}+2c_{12}| \varphi_{m-2\uparrow}|^{2}|\varphi_{m-2\downarrow}|^{2}\big)d\boldsymbol{r}$ for $m= 1$, $2$, and $V_{12} = \frac{1}{2} \int g\big(2|\varphi_{0\uparrow}|^{2}|\varphi_{-1\uparrow}|^{2} +2|\varphi_{-1\downarrow}|^{2}|\varphi_{0\downarrow}|^{2}+ c_{12}|\varphi_{-1\uparrow}|^{2}|\varphi_{0\downarrow}|^{2} +c_{12}|\varphi_{-1\downarrow}|^{2}|\varphi_{0\uparrow}|^{2}+ c_{12}\varphi_{-1\uparrow}^{\ast}\varphi_{-1\downarrow}^{\ast} \varphi_{0\downarrow}\varphi_{0\uparrow}+\textrm{H.c.}\big)d\boldsymbol{r} $. |
[67] | Bloch I 2005 Nat. Phys. 1 23 | Ultracold quantum gases in optical lattices
[68] | Liu B, Fu L B, Yang S P, and Liu J 2007 Phys. Rev. A 75 033601 | Josephson oscillation and transition to self-trapping for Bose-Einstein condensates in a triple-well trap
[69] | Trombettoni A and Smerzi A 2001 Phys. Rev. Lett. 86 2353 | Discrete Solitons and Breathers with Dilute Bose-Einstein Condensates
[70] | In the Josepshson junction considered by Feynman (Ref.[3]), the current and phase are described by $I = \dot{z} = K \sin(\theta)$ and $\dot{\theta} = [\mu_0 + A \cos(\omega t)]$. From the second equation, $\theta(t) = \theta_0 + \mu_0 t + A \sin(\omega t)/\omega$. The current $I$ in this case has exactly the same form as $z(t)$ considered in Eq. (10). |
[71] | In the strong modulating limit when $\omega_2 > \omega$, the excited bands may also be excited. We find that when $\omega_2 = 0.8\omega$ ($\eta = 80\%$), the excitation of the states are still negligible for the parameters used in Fig. 4(b). |
[72] | Using the transverse confinement frequency in one-dimensional BEC (Refs.[64, 65]) with $\omega = 2\pi \cdot 2.0$ kHz, $\alpha_J = 0.9$, $h_x = 2\pi\cdot 0.8$ kHz ($\eta = 40\%$), we estimate $T = 1.4$ ms. |
[73] | Pan F and Draayer J 1999 Phys. Lett. B 451 1 | Analytical solutions for the LMG model
[74] | Ma J, Wang X, Sun C P, and Nori F 2011 Phys. Rep. 509 89 | Quantum spin squeezing
[75] | Salvatori G, Mandarino A, and Paris M G 2014 Phys. Rev. A 90 022111 | Quantum metrology in Lipkin-Meshkov-Glick critical systems
[76] | Luo X Y, Zou Y Q, Wu L N, Liu Q, and Han M F 2017 Science 355 620 | Deterministic entanglement generation from driving through quantum phase transitions
[77] | Graefe E and Korsch H 2007 Phys. Rev. A 76 032116 | Semiclassical quantization of an -particle Bose-Hubbard model