[1] | Naguib M et al 2012 ACS Nano 6 1322 | Two-Dimensional Transition Metal Carbides
[2] | Naguib M et al 2014 Adv. Mater. 26 992 | 25th Anniversary Article: MXenes: A New Family of Two-Dimensional Materials
[3] | Lukatskaya M R et al 2013 Science 341 1502 | Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide
[4] | Come J et al 2012 J. Electrochem. Soc. 159 A1368 | A Non-Aqueous Asymmetric Cell with a Ti 2 C-Based Two-Dimensional Negative Electrode
[5] | Zhao S S et al 2017 Energy Storage Mater. 8 42 | Li-ion uptake and increase in interlayer spacing of Nb4C3 MXene
[6] | Mashtalir O et al 2015 Adv. Mater. 27 3501 | Amine-Assisted Delamination of Nb 2 C MXene for Li-Ion Energy Storage Devices
[7] | Dall'Agnese Y et al 2015 J. Phys. Chem. Lett. 6 2305 | Two-Dimensional Vanadium Carbide (MXene) as Positive Electrode for Sodium-Ion Capacitors
[8] | Naguib M et al 2012 Electrochem. Commun. 16 61 | MXene: a promising transition metal carbide anode for lithium-ion batteries
[9] | Ghidiu M et al 2014 Nature 516 78 | Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance
[10] | Wang X et al 2015 Nat. Commun. 6 6544 | Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors
[11] | Lukatskaya M R et al 2017 Nat. Energy 2 17105 | Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
[12] | Levi M D et al 2015 Adv. Energy Mater. 5 1400815 | Solving the Capacitive Paradox of 2D MXene using Electrochemical Quartz-Crystal Admittance and In Situ Electronic Conductance Measurements
[13] | Lukatskaya M R et al 2015 Adv. Energy Mater. 5 1500589 | Probing the Mechanism of High Capacitance in 2D Titanium Carbide Using In Situ X-Ray Absorption Spectroscopy
[14] | Lin Z F et al 2016 Electrochem. Commun. 72 50 | Electrochemical and in-situ X-ray diffraction studies of Ti 3 C 2 T x MXene in ionic liquid electrolyte
[15] | Mu X P et al 2019 Adv. Funct. Mater. 29 1902953 | Revealing the Pseudo‐Intercalation Charge Storage Mechanism of MXenes in Acidic Electrolyte
[16] | Wang X H et al 2019 Nat. Energy 4 241 | Influences from solvents on charge storage in titanium carbide MXenes
[17] | Naguib M et al 2013 J. Am. Chem. Soc. 135 15966 | New Two-Dimensional Niobium and Vanadium Carbides as Promising Materials for Li-Ion Batteries
[18] | Bak S M et al 2017 Adv. Energy Mater. 7 1700959 | Na-Ion Intercalation and Charge Storage Mechanism in 2D Vanadium Carbide
[19] | Wang C D et al 2018 Adv. Mater. 30 1802525 | Atomic Cobalt Covalently Engineered Interlayers for Superior Lithium-Ion Storage
[20] | Wang C D et al 2019 Small Methods 3 1900495 | Delaminating Vanadium Carbides for Zinc‐Ion Storage: Hydrate Precipitation and H + /Zn 2+ Co‐Action Mechanism
[21] | VahidMohammadi A et al 2017 ACS Nano 11 11135 | Two-Dimensional Vanadium Carbide (MXene) as a High-Capacity Cathode Material for Rechargeable Aluminum Batteries
[22] | Shan Q M et al 2018 Electrochem. Commun. 96 103 | Two-dimensional vanadium carbide (V2C) MXene as electrode for supercapacitors with aqueous electrolytes
[23] | Mashtalir O et al 2013 Nat. Commun. 4 1716 | Intercalation and delamination of layered carbides and carbonitrides
[24] | Simon P and Gogotsi Y 2008 Nat. Mater. 7 845 | Materials for electrochemical capacitors
[25] | Wang G P et al 2012 Chem. Soc. Rev. 41 797 | A review of electrode materials for electrochemical supercapacitors
[26] | Ghidiu M et al 2016 Chem. Mater. 28 3507 | Ion-Exchange and Cation Solvation Reactions in Ti 3 C 2 MXene
[27] | Shi S Q et al 2016 Chin. Phys. B 25 018212 | Multi-scale computation methods: Their applications in lithium-ion battery research and development
[28] | Ando Y et al 2020 Adv. Funct. Mater. 30 2000820 | Capacitive versus Pseudocapacitive Storage in MXene