[1] | Yang Q, Wang L, Zhou Z, Wang L, Zhang Y, Zhao S, Dong G, Cheng Y, Min T, Hu Z, Chen W, Xia K, and Liu M 2018 Nat. Commun. 9 991 | Ionic liquid gating control of RKKY interaction in FeCoB/Ru/FeCoB and (Pt/Co)2/Ru/(Co/Pt)2 multilayers
[2] | Li S, Li Q, Xu J, Yan S, Miao G X, Kang S, Dai Y, Jiao J, and Lü Y 2016 Adv. Funct. Mater. 26 3738 | Tunable Optical Mode Ferromagnetic Resonance in FeCoB/Ru/FeCoB Synthetic Antiferromagnetic Trilayers under Uniaxial Magnetic Anisotropy
[3] | Kamimaki A, Iihama S, Suzuki K Z, Yoshinaga N, and Mizukami S 2020 Phys. Rev. Appl. 13 044036 | Parametric Amplification of Magnons in Synthetic Antiferromagnets
[4] | Slonczewski J C 1993 J. Magn. Magn. Mater. 126 374 | Mechanism of interlayer exchange in magnetic multilayers
[5] | Ma Q, Li Y, Choi Y, Chen W C, Han S J, and Chien C L 2020 Appl. Phys. Lett. 117 172403 | Spin orbit torque switching of synthetic Co/Ir/Co trilayers with perpendicular anisotropy and tunable interlayer coupling
[6] | Liu Y, Zhou B, and Zhu J G 2019 Sci. Rep. 9 325 | Field-free Magnetization Switching by Utilizing the Spin Hall Effect and Interlayer Exchange Coupling of Iridium
[7] | Huai Y, Gan H, Wang Z, Xu P, Hao X, Yen B K, Malmhall R, Pakala N, Wang C, Zhang J, Zhou Y, Jung D, Satoh K, Wang R, Xue L, and Pakala M 2018 Appl. Phys. Lett. 112 092402 | High performance perpendicular magnetic tunnel junction with Co/Ir interfacial anisotropy for embedded and standalone STT-MRAM applications
[8] | Kamimaki A, Iihama S, Taniguchi T, and Mizukami S 2019 Appl. Phys. Lett. 115 132402 | All-optical detection and evaluation of magnetic damping in synthetic antiferromagnet
[9] | Martin T, Woltersdorf G, Stamm C, Dürr H A, Mattheis R, Back C H, and Bayreuther G 2008 J. Appl. Phys. 103 07B112 | Layer resolved magnetization dynamics in interlayer exchange coupled Ni81Fe19∕Ru∕Co90Fe10 by time resolved x-ray magnetic circular dichroism
[10] | Liu X M, Nguyen H T, Ding J, Cottam M G, and Adeyeye A O 2014 Phys. Rev. B 90 064428 | Interlayer coupling in /Ru/ multilayer films: Ferromagnetic resonance experiments and theory
[11] | Lindner J and Baberschke K 2003 J. Phys.: Condens. Matter 15 S465 | Ferromagnetic resonance in coupled ultrathin films
[12] | Belmeguenai M, Martin T, Woltersdorf G, Bayreuther G, Baltz V, Suszka A K, and Hickey B J 2008 J. Phys.: Condens. Matter 20 345206 | Microwave spectroscopy with vector network analyzer for interlayer exchange-coupled symmetrical and asymmetrical NiFe/Ru/NiFe
[13] | Wang C, Zhang S, Qiao S, Du H, Liu X, Sun R, Chu X M, Miao G X, Dai Y, Kang S, Yan S, and Li S 2018 Appl. Phys. Lett. 112 192401 | Dual-mode ferromagnetic resonance in an FeCoB/Ru/FeCoB synthetic antiferromagnet with uniaxial anisotropy
[14] | Waring H J, Johansson N A B, Vera-Marun I J, and Thomson T 2020 Phys. Rev. Appl. 13 034035 | Zero-field Optic Mode Beyond 20 GHz in a Synthetic Antiferromagnet
[15] | Sud A, Zollitsch C W, Kamimaki A, Dion T, Khan S, Iihama S, Mizukami S, and Kurebayashi H 2020 Phys. Rev. B 102 100403 | Tunable magnon-magnon coupling in synthetic antiferromagnets
[16] | Shiota Y, Taniguchi T, Ishibashi M, Moriyama T, and Ono T 2020 Phys. Rev. Lett. 125 017203 | Tunable Magnon-Magnon Coupling Mediated by Dynamic Dipolar Interaction in Synthetic Antiferromagnets
[17] | Li Y, Zhang W, Tyberkevych V, Kwok W K, Hoffmann A, and Novosad V 2020 J. Appl. Phys. 128 130902 | Hybrid magnonics: Physics, circuits, and applications for coherent information processing
[18] | Sklenar J and Zhang W 2020 arXiv:2008.01298v1 [cond-mat.mtrl-sci] | Self-hybridization and tunable magnon-magnon coupling in van der Waals synthetic magnets
[19] | MacNeill D, Hou J T, Klein D R, Zhang P, Jarillo-Herrero P, and Liu L 2019 Phys. Rev. Lett. 123 047204 | Gigahertz Frequency Antiferromagnetic Resonance and Strong Magnon-Magnon Coupling in the Layered Crystal
[20] | Li M, Lu J, and He W 2021 Phys. Rev. B 103 064429 | Symmetry breaking induced magnon-magnon coupling in synthetic antiferromagnets
[21] | AlQassem B M, Hamad B A, Khalifeh J M, and Demangeat C 2008 Eur. Phys. J. B 62 433 | Magnetic exchange coupling of Co/Ir multilayers
[22] | Luo Y, Moske M, and Samwer K 1998 Europhys. Lett. 42 565 | Interlayer coupling and magnetoresistance in Ir/Co multilayers
[23] | Sun R, Li Y, Xie Z K, Li Y, Zhao X T, Liu W, Zhang Z D, Zhu T, Cheng Z H, and He W 2020 J. Magn. Magn. Mater. 497 165971 | Determination of spin pumping effect in CoFeB/Ir bilayer
[24] | Soumyanarayanan A, Raju M, Gonzalez O A L, Tan A K C, Im M Y, Petrović A P, Ho P, Khoo K H, Tran M, Gan C K, Ernult F, and Panagopoulos C 2017 Nat. Mater. 16 898 | Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
[25] | Moreau-Luchaire C, Moutafis C, Reyren N, Sampaio J, Vaz C A F, Van Horne N, Bouzehouane K, Garcia K, Deranlot C, Warnicke P, Wohlhüter P, George J M, Weigand M, Raabe J, Cros V, and Fert A 2016 Nat. Nanotechnol. 11 444 | Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
[26] | Gabor M S, Petrisor T, Mos R B, Nasui M, Tiusan C, and Petrisor T 2017 J. Phys. D 50 465004 | Interlayer exchange coupling in perpendicularly magnetized Pt/Co/Ir/Co/Pt structures
[27] | Wigen P E, Zhang Z, Zhou L, Ye M, and Cowen J A 1993 J. Appl. Phys. 73 6338 | The dispersion relation in antiparallel coupled ferromagnetic films
[28] | Rezende S M, Chesman C, Lucena M A, Azevedo A, de Aguiar F M, and Parkin S S P 1998 J. Appl. Phys. 84 958 | Studies of coupled metallic magnetic thin-film trilayers
[29] | Slonczewski J C 1991 Phys. Rev. Lett. 67 3172 | Fluctuation mechanism for biquadratic exchange coupling in magnetic multilayers
[30] | Liensberger L, Kamra A, Maier-Flaig H, Geprägs S, Erb A, Goennenwein S T B, Gross R, Belzig W, Huebl H, and Weiler M 2019 Phys. Rev. Lett. 123 117204 | Exchange-Enhanced Ultrastrong Magnon-Magnon Coupling in a Compensated Ferrimagnet
[31] | Maier-Flaig H, Goennenwein S T B, Ohshima R, Shiraishi M, Gross R, Huebl H, and Weiler M 2018 Rev. Sci. Instrum. 89 076101 | Note: Derivative divide, a method for the analysis of broadband ferromagnetic resonance in the frequency domain