[1] | Karch K, Dietrich D, Windl W, Pavone P, Mayer A P, and Strauch D 1996 Phys. Rev. B 53 7259 | Contribution of quantum and thermal fluctuations to the elastic moduli and dielectric constants of covalent semiconductors
[2] | Zhang Y, Sun H, and Chen C F 2005 Phys. Rev. Lett. 94 145505 | Atomistic Deformation Modes in Strong Covalent Solids
[3] | Jenei Z, O'Bannon E F, Weir S T, Cynn H, Lipp M J, and Evans W J 2018 Nat. Commun. 9 1 | Structural absorption by barbule microstructures of super black bird of paradise feathers
[4] | Semenic T, Hu J, Kraemer S, Housley R, and Sudre O 2018 J. Am. Ceram. Soc. 101 4791 | High hardness cubic boron nitride with nanograin microstructure produced by high‐energy milling
[5] | Tanigaki K, Ogi H, Sumiya H, Kusakabe K, Nakamura N, Hirao M, and Ledbetter H 2013 Nat. Commun. 4 2343 | Observation of higher stiffness in nanopolycrystal diamond than monocrystal diamond
[6] | Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L, and Liu Z Y 2013 Nature 493 385 | Ultrahard nanotwinned cubic boron nitride
[7] | Zhang R F, Zhang S H, Guo Y Q, Fu Z H, Legut D, Germann T C, and Veprek S 2019 Phys. Rep. 826 1 | First-principles design of strong solids: Approaches and applications
[8] | Zhang X X, Wang Y C, Lv J, Zhu C Y, Li Q, Zhang M, Li Q, and Ma Y M 2013 J. Chem. Phys. 138 134704 | Numerically exact, time-dependent study of correlated electron transport in model molecular junctions
[9] | Tehrani A M and Brgoch J 2019 J. Solid State Chem. 271 47 | Hard and superhard materials: A computational perspective
[10] | Xu B and Tian Y J 2015 Sci. Chin. Mater. 58 132 | Superhard materials: recent research progress and prospects
[11] | Atabaki A H, Moazeni S, Pavanello F, Gevorgyan H, Notaros J, Alloatti L, Wade M T, Sun C, Kruger S A, Meng H Y, Qubaisi K, Wang I, Zhang B H, Khilo A, Baiocco C V, Popovic M A, Stojanovic V M, and Ram R J 2018 Nature 560 E4 | Publisher Correction: Integrating photonics with silicon nanoelectronics for the next generation of systems on a chip
[12] | Guo Q L, Di Z F, Lagally M G, and Mei Y F 2018 Mater. Sci. Eng. R 128 1 | Strain engineering and mechanical assembly of silicon/germanium nanomembranes
[13] | Zhu G J, Luo W, Wang L J, Jiang W, and Yang J P 2019 J. Mater. Chem. A 7 24715 | Silicon: toward eco-friendly reduction techniques for lithium-ion battery applications
[14] | Ogata S, Li J, Hirosaki N, Shibutani Y, and Yip S 2004 Phys. Rev. B 70 104104 | Ideal shear strain of metals and ceramics
[15] | Pizzagalli L, Demenet J L, and Rabier J 2009 Phys. Rev. B 79 045203 | Theoretical study of pressure effect on the dislocation core properties in semiconductors
[16] | Roundy D and Cohen M L 2001 Phys. Rev. B 64 212103 | Ideal strength of diamond, Si, and Ge
[17] | Wu H, Luo X, Wen L, Sun H, and Chen C 2019 Carbon 144 161 | Extreme static compression of carbon to terapascal pressures
[18] | Zhang S H, Legut D, Fu Z H, Germann T C, and Zhang R F 2018 Carbon 137 156 | High-throughput screening for superhard carbon and boron nitride allotropes with superior stiffness and strength
[19] | Liu C, Song X Q, Li Q, Ma Y M, and Chen C F 2020 Phys. Rev. Lett. 124 147001 | Superconductivity in Compression-Shear Deformed Diamond
[20] | Liu C, Song X Q, Li Q, Ma Y M, and Chen C F 2019 Phys. Rev. Lett. 123 195504 | Smooth Flow in Diamond: Atomistic Ductility and Electronic Conductivity
[21] | Zhang J S, Bass J D, Taniguchi T, Goncharov A F, Chang Y Y, and Jacobsen S D 2011 J. Appl. Phys. 109 063521 | Elasticity of cubic boron nitride under ambient conditions
[22] | Zhang Y, Sun H, and Chen C 2006 Phys. Rev. B 73 144115 | Structural deformation, strength, and instability of cubic BN compared to diamond: A first-principles study
[23] | Zhang S H, Zheng X, Jin Q Q, Zheng S J, Legut D, Yu X H, Gou H Y, Fu Z H, Guo Y Q, Yan B M, Peng C, Jin C Q, Germann T C, and Zhang R F 2018 Phys. Rev. Mater. 2 123602 | Unprecedented plastic flow channel in through ultrasoft bonds: A challenge to superhardness
[24] | Chen X Q, Niu H Y, Li D Z, and Li Y Y 2011 Intermetallics 19 1275 | Modeling hardness of polycrystalline materials and bulk metallic glasses
[25] | Lyakhov A O and Oganov A R 2011 Phys. Rev. B 84 092103 | Evolutionary search for superhard materials: Methodology and applications to forms of carbon and TiO
[26] | Wang J T, Chen C, Mizuseki H, and Kawazoe Y 2013 Phys. Rev. Lett. 110 165503 | Kinetic Origin of Divergent Decompression Pathways in Silicon and Germanium
[27] | Olijnyk H, Sikka S K, and Holzapfel W B 1984 Phys. Lett. A 103 137 | Structural phase transitions in Si and Ge under pressures up to 50 GPa
[28] | Umeno Y and Cerny M 2008 Phys. Rev. B 77 100101 | Effect of normal stress on the ideal shear strength in covalent crystals
[29] | Guler E and Guler M 2015 Chin. J. Phys. 53 195 |
[30] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[31] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[32] | Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 | Ground State of the Electron Gas by a Stochastic Method
[33] | Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 | Self-interaction correction to density-functional approximations for many-electron systems
[34] | Methfessel M and Paxton A T 1989 Phys. Rev. B 40 3616 | High-precision sampling for Brillouin-zone integration in metals
[35] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[36] | Togo A and Tanaka I 2015 Scr. Mater. 108 1 | First principles phonon calculations in materials science
[37] | Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2016 J. Comput. Chem. 37 1030 | LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
[38] | Nelson R, Ertural C, George J, Deringer V L, Hautier G, and Dronskowski R 2020 J. Comput. Chem. 41 1931 | LOBSTER : Local orbital projections, atomic charges, and chemical‐bonding analysis from projector‐augmented‐wave‐based density‐functional theory
[39] | Deringer V L, Tchougréeff A L, and Dronskowski R 2011 J. Phys. Chem. A 115 5461 | Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
[40] | Dronskowski R and Blöchl P E 1993 J. Phys. Chem. 97 8617 | Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations
[41] | Maintz S, Deringer V L, Tchougréeff A L, and Dronskowski R 2013 J. Comput. Chem. 34 2557 | Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
[42] | Zhang S H and Zhang R F 2017 Comput. Phys. Commun. 220 403 | AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation
[43] | Hill R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[44] | Hill R 1963 J. Mech. Phys. Solids 11 357 | Elastic properties of reinforced solids: Some theoretical principles
[45] | Zhang S H, Fu Z H, and Zhang R F 2019 Comput. Phys. Commun. 238 244 | ADAIS: Automatic Derivation of Anisotropic Ideal Strength via high-throughput first-principles computations
[46] | Guo Y Q, Zhang S H, Beyerlein I J, Legut D, Shang S L, Liu Z K, and Zhang R F 2019 Acta Mater. 181 423 | Synergetic effects of solute and strain in biocompatible Zn-based and Mg-based alloys
[47] | Wang N, Fu Z H, Legut D, Wei B, Germann T C, and Zhang R F 2019 Phys. Chem. Chem. Phys. 21 16095 | Designing ultrastrong 5d transition metal diborides with excellent stability for harsh service environments
[48] | Zhang S H, Legut D, Germann T C, Veprek S, Zhang H J, and Zhang R F 2020 Phys. Rev. B 101 014104 | Plastic flow between nanometer-spaced planar defects in nanostructured diamond and boron nitride
[49] | Zhang S H, Legut D, and Zhang R F 2019 Comput. Phys. Commun. 240 60 | PNADIS: An automated Peierls–Nabarro analyzer for dislocation core structure and slip resistance
[50] | Joos B, Ren Q, and Duesbery M S 1994 Phys. Rev. B 50 5890 | Peierls-Nabarro model of dislocations in silicon with generalized stacking-fault restoring forces
[51] | Schoeck G 2005 Mater. Sci. Eng. A 400–401 7 | The Peierls model: Progress and limitations
[52] | Joos B and Duesber M S 1997 Phys. Rev. Lett. 78 266 | The Peierls Stress of Dislocations: An Analytic Formula
[53] | Blumenau A T, Jones R, Frauenheim T, Willems B, Lebedev O I, Tendeloo G V, Fisher D, and Martineau P M 2003 Phys. Rev. B 68 014115 | Dislocations in diamond: Dissociation into partials and their glide motion
[54] | Kamimura Y, Edagawa K, Iskandarov A M, Osawa M, Umeno Y, and Takeuchi S 2018 Acta Mater. 148 355 | Peierls stresses estimated via the Peierls-Nabarro model using ab-initio γ-surface and their comparison with experiments
[55] | Zhang S H, Zhang Q, Liu Z R, Legut D, Germann T C, Veprek S, Zhang H J, and Zhang R F 2020 ACS Appl. Mater. & Interfaces 12 4135 | Ultrastrong π-Bonded Interface as Ductile Plastic Flow Channel in Nanostructured Diamond
[56] | Legut D, Friak M, and Sob M 2007 Phys. Rev. Lett. 99 016402 | Why Is Polonium Simple Cubic and So Highly Anisotropic?