[1] | Chen W and Wang Z X 2020 Chin. Phys. Lett. 37 125001 | Energetic Particles in Magnetic Confinement Fusion Plasmas
[2] | Qiu Z Y, Chen L, and Zonca F 2019 Nucl. Fusion 59 066024 | Gyrokinetic theory of the nonlinear saturation of a toroidal Alfvén eigenmode
[3] | Yang S X et al. 2018 Nucl. Fusion 58 046016 | Toroidal Alfvén eigenmode triggered by trapped anisotropic energetic particles in a toroidal resistive plasma with free boundary
[4] | Yu L M et al. 2019 Nucl. Fusion 59 086016 | Low-frequency fishbone driven by passing fast ions in tokamak plasmas
[5] | Wu L N and Yu G Y 2002 Chin. Phys. Lett. 19 1312 | Effect of Magnetohydrodynamic Perturbations on the Orbit Loss of Alpha Particles in Tokamak Plasma
[6] | Chen Y et al. 2020 Chin. Phys. Lett. 37 095201 | Verification of Energetic-Particle-Induced Geodesic Acoustic Mode in Gyrokinetic Particle Simulations
[7] | Ding X T and Chen W 2018 Plasma Sci. Technol. 20 094008 | Review of the experiments for energetic particle physics on HL-2A
[8] | Shi P W et al. 2021 Chin. Phys. Lett. 38 035202 | Energetic Particle Physics on the HL-2A Tokamak: A Review
[9] | Pinches S D et al. 2015 Phys. Plasmas 22 021807 | Energetic ions in ITER plasmas
[10] | Wan Y X et al. 2017 Nucl. Fusion 57 102009 | Overview of the present progress and activities on the CFETR
[11] | Zhuang G et al. 2019 Nucl. Fusion 59 112010 | Progress of the CFETR design
[12] | Chen J L et al. 2017 Plasma Phys. Control. Fusion 59 075005 | Self-consistent modeling of CFETR baseline scenarios for steady-state operation
[13] | Hao B L et al. 2020 Sci. Sin.-Phys. Mech. Astron. 50 065201 | Fusion α loss due to toroidal field ripple perturbation in CFETR
[14] | Zhao R et al. 2020 Plasma Phys. Control. Fusion 62 115001 | Alpha particle ripple loss in CFETR steady-state scenario
[15] | Dawson J M 1983 Rev. Mod. Phys. 55 403 | Particle simulation of plasmas
[16] | Lee W W 1983 Phys. Fluids 26 556 | Gyrokinetic approach in particle simulation
[17] | Pankin A et al. 2004 Comput. Phys. Commun. 159 157 | The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library
[18] | White R B and Chance M S 1984 Phys. Fluids 27 2455 | Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section
[19] | Hirvijoki E et al. 2014 Comput. Phys. Commun. 185 1310 | ASCOT: Solving the kinetic equation of minority particle species in tokamak plasmas
[20] | Kramer G J et al. 2013 Plasma Phys. Control. Fusion 55 025013 | A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks
[21] | McClements K G 2005 Phys. Plasmas 12 072510 | Full orbit computations of ripple-induced fusion α-particle losses from burning tokamak plasmas
[22] | Pfefferlé D et al. 2014 Comput. Phys. Commun. 185 3127 | VENUS-LEVIS and its spline-Fourier interpolation of 3D toroidal magnetic field representation for guiding-centre and full-orbit simulations of charged energetic particles
[23] | Todo Y 2006 Phys. Plasmas 13 082503 | Properties of energetic-particle continuum modes destabilized by energetic ions with beam-like velocity distributions
[24] | Lütjens H et al. 1996 Comput. Phys. Commun. 97 219 | The CHEASE code for toroidal MHD equilibria
[25] | Pfefferlé D et al. 2016 Nucl. Fusion 56 112002 | Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO
[26] | Bosch H S and Hale G M 1992 Nucl. Fusion 32 611 | Improved formulas for fusion cross-sections and thermal reactivities
[27] | Atzeni S and Meyer-ter-Vehn J 2004 The Physics of Inertial Fusion: Beam Plasma Interaction Hydrodynamics, Hot Dense Matter (Oxford: Clarendon Press) |
[28] | Clauser C F, Farengo R, and Ferrari H E 2019 Comput. Phys. Commun. 234 126 | FOCUS: A full-orbit CUDA solver for particle simulations in magnetized plasmas