[1] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 | Real Spectra in Non-Hermitian Hamiltonians Having Symmetry
[2] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[3] | Broecker P, Carrasquilla J, Melko R G, and Trebst S 2017 Sci. Rep. 7 1 | Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness
[4] | Ma Y, Su C, Liu J, Ren Z, Xu C, and Gao Y 2020 Phys. Rev. C 101 014304 | Predictions of nuclear charge radii and physical interpretations based on the naive Bayesian probability classifier
[5] | Ch'ng K, Carrasquilla J, Melko R G, and Khatami E 2017 Phys. Rev. X 7 031038 | Machine Learning Phases of Strongly Correlated Fermions
[6] | Wu J and Zhang W 2019 arXiv:1906.11216 [cond-mat.dis-nn] | Finding Quantum Many-Body Ground States with Artificial Neural Network
[7] | Zhang Y and Kim E A 2017 Phys. Rev. Lett. 118 216401 | Quantum Loop Topography for Machine Learning
[8] | Zhang Y, Melko R G, and Kim E A 2017 Phys. Rev. B 96 245119 | Machine learning quantum spin liquids with quasiparticle statistics
[9] | Ohtsuki T and Ohtsuki T 2016 J. Phys. Soc. Jpn. 85 123706 | Deep Learning the Quantum Phase Transitions in Random Two-Dimensional Electron Systems
[10] | Schindler F, Regnault N, and Neupert T 2017 Phys. Rev. B 95 245134 | Probing many-body localization with neural networks
[11] | Ponte P and Melko R G 2017 Phys. Rev. B 96 205146 | Kernel methods for interpretable machine learning of order parameters
[12] | Wang L 2016 Phys. Rev. B 94 195105 | Discovering phase transitions with unsupervised learning
[13] | Tanaka A and Tomiya A 2017 J. Phys. Soc. Jpn. 86 063001 | Detection of Phase Transition via Convolutional Neural Networks
[14] | Van Nieuwenburg E P, Liu Y H, and Huber S D 2017 Nat. Phys. 13 435 | Learning phase transitions by confusion
[15] | Yao J, Wu Y, Koo J, Yan B, and Zhai H 2020 Phys. Rev. Res. 2 013287 | Active learning algorithm for computational physics
[16] | Liu G, Ma W P, Cao H, and Lyu L D 2020 Laser Phys. Lett. 17 045201 | A quantum Hopfield neural network model and image recognition
[17] | Ohtsuki T and Mano T 2020 J. Phys. Soc. Jpn. 89 022001 | Drawing Phase Diagrams of Random Quantum Systems by Deep Learning the Wave Functions
[18] | Peng B, Özdemir Ş K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394 | Parity–time-symmetric whispering-gallery microcavities
[19] | Zhang Z, Zhang Y, Sheng J, Yang L, Miri M A, Christodoulides D N, He B, Zhang Y, and Xiao M 2016 Phys. Rev. Lett. 117 123601 | Observation of Parity-Time Symmetry in Optically Induced Atomic Lattices
[20] | Castaldi G, Savoia S, Galdi V, Alù A, and Engheta N 2013 Phys. Rev. Lett. 110 173901 | Metamaterials via Complex-Coordinate Transformation Optics
[21] | Lien J Y, Chen Y N, Ishida N, Chen H B, Hwang C C, and Nori F 2015 Phys. Rev. B 91 024511 | Multistability and condensation of exciton-polaritons below threshold
[22] | Gao T, Estrecho E, Bliokh K, Liew T, Fraser M, Brodbeck S, Kamp M, Schneider C, Höfling S, Yamamoto Y et al. 2015 Nature 526 554 | Observation of non-Hermitian degeneracies in a chaotic exciton-polariton billiard
[23] | Chestnov I Y, Demirchyan S S, Alodjants A P, Rubo Y G, and Kavokin A V 2016 Sci. Rep. 6 19551 | Permanent Rabi oscillations in coupled exciton-photon systems with PT -symmetry
[24] | Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A, and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902 | Observation of -Symmetry Breaking in Complex Optical Potentials
[25] | Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, and Kip D 2010 Nat. Phys. 6 192 | Observation of parity–time symmetry in optics
[26] | Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, and Peschel U 2012 Nature 488 167 | Parity–time synthetic photonic lattices
[27] | Wimmer M, Regensburger A, Miri M A, Bersch C, Christodoulides D N, and Peschel U 2015 Nat. Commun. 6 7782 | Observation of optical solitons in PT-symmetric lattices
[28] | Hodaei H, Miri M A, Heinrich M, Christodoulides D N, and Khajavikhan M 2014 Science 346 975 | Parity-time-symmetric microring lasers
[29] | Longhi S 2010 Phys. Rev. A 82 031801 | -symmetric laser absorber
[30] | Klambauer G, Unterthiner T, Mayr A, and Hochreiter S 2017 arXiv:1706.02515 [cs.LG] | Self-Normalizing Neural Networks
[31] | Znojil M 2001 Phys. Lett. A 285 7 | -symmetric square well
[32] | Cannata F, Junker G, and Trost J 1998 Phys. Lett. A 246 219 | Schrödinger operators with complex potential but real spectrum
[33] | Fernández F M, Guardiola R, Ros J, and Znojil M 1999 J. Phys. A 32 3105 | A family of complex potentials with real spectrum
[34] | Bender C M, Boettcher S, Jones H, and Savage V M 1999 J. Phys. A 32 6771 | Complex square well - a new exactly solvable quantum mechanical model
[35] | Bagchi B, Mallik S, Bı́la H, Jakubskỳ V, Znojil M, and Quesne C 2006 Int. J. Mod. Phys. A 21 2173 | ${\mathcal{PT}}$-SYMMETRIC SUPERSYMMETRY IN A SOLVABLE SHORT-RANGE MODEL
[36] | Ahmed Z 2001 Phys. Lett. A 282 343 | Real and complex discrete eigenvalues in an exactly solvable one-dimensional complex -invariant potential
[37] | Graefe E M, Korsch H J, and Niederle A E 2008 Phys. Rev. Lett. 101 150408 | Mean-Field Dynamics of a Non-Hermitian Bose-Hubbard Dimer