[1] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[2] | Hafner J, Wolverton C, and Ceder G 2006 MRS Bull. 31 659 | Toward Computational Materials Design: The Impact of Density Functional Theory on Materials Research
[3] | Jones R O 2015 Rev. Mod. Phys. 87 897 | Density functional theory: Its origins, rise to prominence, and future
[4] | Wu Y, Schuster M, Chen Z, Le Q V, and Norouzi M 2016 arXiv:1609.08144 [cs.CL] | Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation
[5] | Hinton G, Deng L, Yu D, Dahl G, and Mohamed A R 2012 IEEE Signal Process. Mag. 29 29 | Multicomponent Signal Processing for Rayleigh Wave Ellipticity Estimation: Application to Seismic Hazard Assessment
[6] | Krizhevsky A, Sutskever I, and Hinton G E 2012 Imagenet Classification with Deep Convolutional Neural Networks in Advances in Neural Information Processing Systems ed Pereira F, Burges C J C, Bottou L and Weinberger K Q (Curran Associates, Inc.) vol 25 pp 1097–1105 |
[7] | Behler J and Parrinello M 2007 Phys. Rev. Lett. 98 146401 | Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces
[8] | Bartók A P, Payne M C, Kondor R, and Csányi G 2010 Phys. Rev. Lett. 104 136403 | Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons
[9] | Rupp M, Tkatchenko A, Müller K R, and Von Lilienfeld O A 2012 Phys. Rev. Lett. 108 058301 | Fast and Accurate Modeling of Molecular Atomization Energies with Machine Learning
[10] | Zhang L, Han J, Wang H, Car R, and Weinan E 2018 Phys. Rev. Lett. 120 143001 | Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics
[11] | Ramakrishnan R, Dral P O, Rupp M, and von Lilienfeld O A 2014 Sci. Data 1 140022 | Quantum chemistry structures and properties of 134 kilo molecules
[12] | Gilmer J, Schoenholz S S, Riley P F, Vinyals O, and Dahl G E 2017 Proceedings of the 34th International Conference on Machine Learning (ICML'17) vol 70 pp 1263–1272 |
[13] | Chen G, Chen P, Hsieh C Y, Lee C K, and Liao B 2019 arXiv:1906.09427 [cs.LG] | Alchemy: A Quantum Chemistry Dataset for Benchmarking AI Models
[14] | Zhuang L, Ye Q, Pan D, and Li X Z 2020 Chin. Phys. Lett. 37 043101 | Discriminating High-Pressure Water Phases Using Rare-Event Determined Ionic Dynamical Properties
[15] | Yao T S, Tang C Y, Yang M, Zhu K J, and Yan D Y 2019 Chin. Phys. Lett. 36 068101 | Machine Learning to Instruct Single Crystal Growth by Flux Method
[16] | Tang Q, Yang J H, Liu Z P, and Gong X G 2020 Chin. Phys. Lett. 37 096802 | Directly Determining the Interface Structure and Band Offset of a Large-Lattice-Mismatched CdS/CdTe Heterostructure
[17] | Snyder J C, Rupp M, Hansen K, Müller K R, and Burke K 2012 Phys. Rev. Lett. 108 253002 | Finding Density Functionals with Machine Learning
[18] | Lignères V L and Carter E A 2005 Handbook of Materials Modeling (Berlin: Springer) p 137 |
[19] | Witt W C, Beatriz G, Dieterich J M, and Carter E A 2018 J. Mater. Res. 33 777 | Orbital-free density functional theory for materials research
[20] | Bengio Y, Delalleau O, and Le R N 2005 Département d'Informatique et Recherche Opérationnelle, Université de Montréal, Canada Tech. Rep. 1258 |
[21] | Schölkopf B, Herbrich R, and Smola A J 2001 International Conference on Computational Learning Theory (COLT 2001) in Lecture Notes in Computer Science (Berlin: Springer) vol 2111 pp 416–426 | Lecture Notes in Computer Science
[22] | Alvarez M A, Rosasco L, and Lawrence N D 2011 arXiv:1106.6251 [stat.ML] | Kernels for Vector-Valued Functions: a Review
[23] | MacKay D J 1998 NATO ASI Ser. F: Comput. Syst. Sci. 168 133 |
[24] | Calandra R, Peters J, Rasmussen C E, and Deisenroth M P 2016 2016 International Joint Conference on Neural Networks (IJCNN) (24-29 July 2016, Vancouver, BC, Canada) pp 3338–3345 | Manifold Gaussian Processes for regression
[25] | Stein M L 2012 Interpolation of Spatial Data: Some Theory for Kriging (Berlin: Springer) |