Processing math: 100%

Spin-Wave Dynamics in an Artificial Kagome Spin Ice

Funds: Supported by the State Grid Corporation of China via the Science and Technology Project: Research on Electromagnetic Measurement Technology Based on EIT and TMR (Grant No. JL71-18-007).
  • Received Date: November 22, 2020
  • Published Date: March 31, 2021
  • Artificial spin ice (ASI) structures have significant technological potential as reconfigurable metamaterials and magnetic storage media. We investigate the field/frequency-dependent magnetic dynamics of a kagome ASI made of 25-nm-thick permalloy nanomagnet elements, combining magnetoresistance (MR) and microscale ferromagnetic resonance (FMR) techniques. Our FMR spectra show a broadband absorption spectrum from 0.2 GHz to 3 GHz at H below 0.3 kOe, where the magnetic configuration of the kagome ASI is in the multidomain state, because the external magnetic field is below the obtained coercive field Hc0.3 kOe, based on both the low-field range MR loops and simulations, suggesting that the low-field magnetization dynamics of kagome ASI is dominated by a multimode resonance regime. However, the FMR spectra exhibit five distinctive resonance modes at the high-field quasi-uniform magnetization state. Furthermore, our micromagnetic simulations provide additional spatial resolution of these resonance modes, identifying the presence of two high-frequency primary modes, localized in the horizontal and vertical bars of the ASI, respectively; three other low-frequency modes are mutually exclusive and separately pinned at the corners of the kagome ASI by an edge-induced dipolar field. Our results suggest that an ASI structural design can be adopted as an efficient approach for the development of low-power filters and magnonic devices.
  • Article Text

  • [1]
    Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffe P 2006 Nature 439 303 doi: 10.1038/nature04447

    CrossRef Google Scholar

    [2]
    Castelnovo C, Moessner R and Sondhi S L 2008 Nature 451 42 doi: 10.1038/nature06433

    CrossRef Google Scholar

    [3]
    Morgan J P, Stein A, Langridge S and Marrows C H 2011 Nat. Phys. 7 75 doi: 10.1038/nphys1853

    CrossRef Google Scholar

    [4]
    Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85 1473 doi: 10.1103/RevModPhys.85.1473

    CrossRef Google Scholar

    [5]
    Skjaervo S H, Marrows C H, Stamps R L and Heyderman L J 2020 Nat. Rev. Phys. 2 13 doi: 10.1038/s42254-019-0118-3

    CrossRef Google Scholar

    [6]
    Gliga S, Iacocca E and Heinonen O G 2020 APL Mater. 8 040911 doi: 10.1063/1.5142705

    CrossRef Google Scholar

    [7]
    Farhan A, Derlet P M, Kleibert A, Balan A, Chopdekar R V, Wyss M, Perron J, Scholl A, Nolting F and Heyderman L J 2013 Phys. Rev. Lett. 111 057204 doi: 10.1103/PhysRevLett.111.057204

    CrossRef Google Scholar

    [8]
    Gliga S, Hrkac G, Donnelly C, Buchi J, Kleibert A, Cui J, Farhan A, Kirk E, Chopdekar R V, Masaki Y, Bingham N S, Scholl A, Stamps R L and Heyderman L J 2017 Nat. Mater. 16 1106 doi: 10.1038/nmat5007

    CrossRef Google Scholar

    [9]
    Wang Y L, Xiao Z L, Snezhko A, Xu J, Ocola L E, Divan R J, Pearson E, Crabtree G W and Kwok W K 2016 Science 352 962 doi: 10.1126/science.aad8037

    CrossRef Google Scholar

    [10]
    Nisoli C, Kapaklis V and Schiffer P 2017 Nat. Phys. 13 200 doi: 10.1038/nphys4059

    CrossRef Google Scholar

    [11]
    Xie Y L, Du Z Z, Yan Z B and Liu J M 2015 Sci. Rep. 5 15875 doi: 10.1038/srep15875

    CrossRef Google Scholar

    [12]
    Canals B, Chioar I A, Nguyen V D, Hehn M, Lacour D, Montaigne F, Locatelli A, Mentes T O, Burgos B S and Rougemaille N 2016 Nat. Commun. 7 11446 doi: 10.1038/ncomms11446

    CrossRef Google Scholar

    [13]
    Zhao K, Deng H, Chen H, Ross K A, Petříček V, Günther G, Russina M, Hutanu V and Gegenwart P 2020 Science 367 1218 doi: 10.1126/science.aaw1666

    CrossRef Google Scholar

    [14]
    Gilbert I, Chern G W, Zhang S, O'Brien S L, Fore B, Nisoli C and Schiffer P 2014 Nat. Phys. 10 670 doi: 10.1038/nphys3037

    CrossRef Google Scholar

    [15]
    Saccone M, Hofhuis K, Huang Y L, Dhuey S, Chen Z, Scholl A, Chopdekar R V, van Dijken S and Farhan A 2019 Phys. Rev. Mater. 3 104402 doi: 10.1103/PhysRevMaterials.3.104402

    CrossRef Google Scholar

    [16]
    Sklenar J, Lao Y, Albrecht A, Watts J D, Nisoli C, Chern G W and Schiffer P 2019 Nat. Phys. 15 191 doi: 10.1038/s41567-018-0348-9

    CrossRef Google Scholar

    [17]
    Zhou X, Chua G L, Singh N and Adeyeye A O 2016 Adv. Funct. Mater. 26 1437 doi: 10.1002/adfm.201505165

    CrossRef Google Scholar

    [18]
    Bhat V S, Heimbach F, Stasinopoulos I and Grundler D 2017 Phys. Rev. B 96 014426 doi: 10.1103/PhysRevB.96.014426

    CrossRef Google Scholar

    [19]
    Talapatra A, Singh N and Adeyeye A O 2020 Phys. Rev. Appl. 13 014034 doi: 10.1103/PhysRevApplied.13.014034

    CrossRef Google Scholar

    [20]
    Bhat V S, Watanabe S, Baumgaertl K, Kleibert A, Schoen M A W, Vaz C A F and Grundler D 2020 Phys. Rev. Lett. 125 117208 doi: 10.1103/PhysRevLett.125.117208

    CrossRef Google Scholar

    [21]
    Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503 doi: 10.1088/0256-307X/37/8/087503

    CrossRef Google Scholar

    [22]
    Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP Adv. 4 107133 doi: 10.1063/1.4899186

    CrossRef Google Scholar

    [23]
    Liu R H, Lim W L and Urazhdin S 2013 Phys. Rev. Lett. 110 147601 doi: 10.1103/PhysRevLett.110.147601

    CrossRef Google Scholar

    [24]
    Eijkel K J 1988 IEEE Trans. Magn. 24 1957 doi: 10.1109/20.11658

    CrossRef Google Scholar

    [25]
    Bailleul M, Holinger R and Fermon C 2006 Phys. Rev. B 73 104424 doi: 10.1103/PhysRevB.73.104424

    CrossRef Google Scholar

    [26]
    Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 Chin. Phys. B 24 097503 doi: 10.1088/1674-1056/24/9/097503

    CrossRef Google Scholar

    [27]
    Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001 doi: 10.1088/0022-3727/43/26/264001

    CrossRef Google Scholar

    [28]
    Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102 doi: 10.1088/1674-1056/abaed5

    CrossRef Google Scholar

  • Related Articles

    [1]Jiahui Li, Jing Dong, Yuqiang Wang, Mingtong Zhu, Yang Yao, Ying Meng, Jiyang Ou, Guibin Lan, Xuming Luo, Jihao Xia, Hongjun Xu, Yizhan Wang, Jiafeng Feng, Hongxiang Wei, Congli He, Richeng Yu, Junwei Zhang, Yong Peng, Nianpeng Lu, Caihua Wan, Xiufeng Han, Guoqiang Yu. Enhanced Spin-Orbit Torque Induced by Interfacial Scattering in Ir/Pt Superlattice [J]. Chin. Phys. Lett., 2025, 42(5): 057401. doi: 10.1088/0256-307X/42/5/057401
    [2]Zijian Xiong, Yining Xu, Xue-Feng Zhang. Dynamics in the planar pyrochlore lattice: flat band, domain wall and anomaly [J]. Chin. Phys. Lett., 2025, 42(5): 057301. doi: 10.1088/0256-307X/42/5/057301
    [3]GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model [J]. Chin. Phys. Lett., 2012, 29(3): 030307. doi: 10.1088/0256-307X/29/3/030307
    [4]PANG Chao-Yang, LI Yu-Liang. Dynamics of Genuine Three-Qubit Entanglement in Ising Spin Systems [J]. Chin. Phys. Lett., 2006, 23(12): 3145-3147.
    [5]TIAN Gui-Hua. Integral Equations for the Spin-Weighted Spheroidal Wave unctions [J]. Chin. Phys. Lett., 2005, 22(12): 3013-3016.
    [6]ZHANG Guo-Feng, GAO Ying-Fang, YIN Wen, LIANG Jiu-Qing, YAN Qi-Wei. Spin Dynamics of Supramolecular Dimer [Mn4]2 Interacting With a Spin-polarized Electron [J]. Chin. Phys. Lett., 2004, 21(4): 598-600.
    [7]JIN Qingyuan, XU Yongbing, ZHAI Ya, LU Mu, BIE Qingshan, JIANG Shulin, ZHAI Hongru. Spin Wave Resonance in Fe/Cu Compositionally Modulated Films [J]. Chin. Phys. Lett., 1994, 11(1): 53-56.
    [8]X. M. Qiu, Z. J. Wang. The η-Pairing Superconductivity in Spin-Density Wave Background [J]. Chin. Phys. Lett., 1993, 10(10): 616-619.
    [9]HE Yuquan, CHI Ruidong, YU Jinlong. Lyapunov Exponent Spectrum for Two-Mode Model in Spin-Wave Chaos [J]. Chin. Phys. Lett., 1992, 9(8): 435-437.
    [10]MA Hong-ru, TSAI Chien-hua. SPIN WAVES IN MAGNETIC SUPERLATTICES [J]. Chin. Phys. Lett., 1984, 1(2): 92-94.

Catalog

    Article views (508) PDF downloads (431) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return