Spin-Wave Dynamics in an Artificial Kagome Spin Ice
-
Abstract
Artificial spin ice (ASI) structures have significant technological potential as reconfigurable metamaterials and magnetic storage media. We investigate the field/frequency-dependent magnetic dynamics of a kagome ASI made of 25-nm-thick permalloy nanomagnet elements, combining magnetoresistance (MR) and microscale ferromagnetic resonance (FMR) techniques. Our FMR spectra show a broadband absorption spectrum from 0.2 GHz to 3 GHz at H below 0.3 kOe, where the magnetic configuration of the kagome ASI is in the multidomain state, because the external magnetic field is below the obtained coercive field Hc∼0.3 kOe, based on both the low-field range MR loops and simulations, suggesting that the low-field magnetization dynamics of kagome ASI is dominated by a multimode resonance regime. However, the FMR spectra exhibit five distinctive resonance modes at the high-field quasi-uniform magnetization state. Furthermore, our micromagnetic simulations provide additional spatial resolution of these resonance modes, identifying the presence of two high-frequency primary modes, localized in the horizontal and vertical bars of the ASI, respectively; three other low-frequency modes are mutually exclusive and separately pinned at the corners of the kagome ASI by an edge-induced dipolar field. Our results suggest that an ASI structural design can be adopted as an efficient approach for the development of low-power filters and magnonic devices. -
-
References
[1] Wang R F, Nisoli C, Freitas R S, Li J, McConville W, Cooley B J, Lund M S, Samarth N, Leighton C, Crespi V H and Schiffe P 2006 Nature 439 303 doi: 10.1038/nature04447[2] Castelnovo C, Moessner R and Sondhi S L 2008 Nature 451 42 doi: 10.1038/nature06433[3] Morgan J P, Stein A, Langridge S and Marrows C H 2011 Nat. Phys. 7 75 doi: 10.1038/nphys1853[4] Nisoli C, Moessner R and Schiffer P 2013 Rev. Mod. Phys. 85 1473 doi: 10.1103/RevModPhys.85.1473[5] Skjaervo S H, Marrows C H, Stamps R L and Heyderman L J 2020 Nat. Rev. Phys. 2 13 doi: 10.1038/s42254-019-0118-3[6] Gliga S, Iacocca E and Heinonen O G 2020 APL Mater. 8 040911 doi: 10.1063/1.5142705[7] Farhan A, Derlet P M, Kleibert A, Balan A, Chopdekar R V, Wyss M, Perron J, Scholl A, Nolting F and Heyderman L J 2013 Phys. Rev. Lett. 111 057204 doi: 10.1103/PhysRevLett.111.057204[8] Gliga S, Hrkac G, Donnelly C, Buchi J, Kleibert A, Cui J, Farhan A, Kirk E, Chopdekar R V, Masaki Y, Bingham N S, Scholl A, Stamps R L and Heyderman L J 2017 Nat. Mater. 16 1106 doi: 10.1038/nmat5007[9] Wang Y L, Xiao Z L, Snezhko A, Xu J, Ocola L E, Divan R J, Pearson E, Crabtree G W and Kwok W K 2016 Science 352 962 doi: 10.1126/science.aad8037[10] Nisoli C, Kapaklis V and Schiffer P 2017 Nat. Phys. 13 200 doi: 10.1038/nphys4059[11] Xie Y L, Du Z Z, Yan Z B and Liu J M 2015 Sci. Rep. 5 15875 doi: 10.1038/srep15875[12] Canals B, Chioar I A, Nguyen V D, Hehn M, Lacour D, Montaigne F, Locatelli A, Mentes T O, Burgos B S and Rougemaille N 2016 Nat. Commun. 7 11446 doi: 10.1038/ncomms11446[13] Zhao K, Deng H, Chen H, Ross K A, Petříček V, Günther G, Russina M, Hutanu V and Gegenwart P 2020 Science 367 1218 doi: 10.1126/science.aaw1666[14] Gilbert I, Chern G W, Zhang S, O'Brien S L, Fore B, Nisoli C and Schiffer P 2014 Nat. Phys. 10 670 doi: 10.1038/nphys3037[15] Saccone M, Hofhuis K, Huang Y L, Dhuey S, Chen Z, Scholl A, Chopdekar R V, van Dijken S and Farhan A 2019 Phys. Rev. Mater. 3 104402 doi: 10.1103/PhysRevMaterials.3.104402[16] Sklenar J, Lao Y, Albrecht A, Watts J D, Nisoli C, Chern G W and Schiffer P 2019 Nat. Phys. 15 191 doi: 10.1038/s41567-018-0348-9[17] Zhou X, Chua G L, Singh N and Adeyeye A O 2016 Adv. Funct. Mater. 26 1437 doi: 10.1002/adfm.201505165[18] Bhat V S, Heimbach F, Stasinopoulos I and Grundler D 2017 Phys. Rev. B 96 014426 doi: 10.1103/PhysRevB.96.014426[19] Talapatra A, Singh N and Adeyeye A O 2020 Phys. Rev. Appl. 13 014034 doi: 10.1103/PhysRevApplied.13.014034[20] Bhat V S, Watanabe S, Baumgaertl K, Kleibert A, Schoen M A W, Vaz C A F and Grundler D 2020 Phys. Rev. Lett. 125 117208 doi: 10.1103/PhysRevLett.125.117208[21] Fu Q W, Li Y, Chen L N, Ma F S, Li H T, Xu Y B, Liu B, Liu R H and Du Y W 2020 Chin. Phys. Lett. 37 087503 doi: 10.1088/0256-307X/37/8/087503[22] Vansteenkiste A, Leliaert J, Dvornik M, Helsen M, Garcia-Sanchez F, Van Waeyenberge B 2014 AIP Adv. 4 107133 doi: 10.1063/1.4899186[23] Liu R H, Lim W L and Urazhdin S 2013 Phys. Rev. Lett. 110 147601 doi: 10.1103/PhysRevLett.110.147601[24] Eijkel K J 1988 IEEE Trans. Magn. 24 1957 doi: 10.1109/20.11658[25] Bailleul M, Holinger R and Fermon C 2006 Phys. Rev. B 73 104424 doi: 10.1103/PhysRevB.73.104424[26] Zhang G F, Li Z X, Wang X G, Nie Y Z and Guo G H 2015 Chin. Phys. B 24 097503 doi: 10.1088/1674-1056/24/9/097503[27] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D 43 264001 doi: 10.1088/0022-3727/43/26/264001[28] Li L Y, Chen L N, Liu R H and Du Y W 2020 Chin. Phys. B 29 117102 doi: 10.1088/1674-1056/abaed5 -
Related Articles
[1] Jiahui Li, Jing Dong, Yuqiang Wang, Mingtong Zhu, Yang Yao, Ying Meng, Jiyang Ou, Guibin Lan, Xuming Luo, Jihao Xia, Hongjun Xu, Yizhan Wang, Jiafeng Feng, Hongxiang Wei, Congli He, Richeng Yu, Junwei Zhang, Yong Peng, Nianpeng Lu, Caihua Wan, Xiufeng Han, Guoqiang Yu. Enhanced Spin-Orbit Torque Induced by Interfacial Scattering in Ir/Pt Superlattice [J]. Chin. Phys. Lett., 2025, 42(5): 057401. doi: 10.1088/0256-307X/42/5/057401 [2] Zijian Xiong, Yining Xu, Xue-Feng Zhang. Dynamics in the planar pyrochlore lattice: flat band, domain wall and anomaly [J]. Chin. Phys. Lett., 2025, 42(5): 057301. doi: 10.1088/0256-307X/42/5/057301 [3] GE Rong-Chun, LI Chuan-Feng, GUO Guang-Can. Spin Dynamics in the XY Model [J]. Chin. Phys. Lett., 2012, 29(3): 030307. doi: 10.1088/0256-307X/29/3/030307 [4] PANG Chao-Yang, LI Yu-Liang. Dynamics of Genuine Three-Qubit Entanglement in Ising Spin Systems [J]. Chin. Phys. Lett., 2006, 23(12): 3145-3147. [5] TIAN Gui-Hua. Integral Equations for the Spin-Weighted Spheroidal Wave unctions [J]. Chin. Phys. Lett., 2005, 22(12): 3013-3016. [6] ZHANG Guo-Feng, GAO Ying-Fang, YIN Wen, LIANG Jiu-Qing, YAN Qi-Wei. Spin Dynamics of Supramolecular Dimer [Mn4]2 Interacting With a Spin-polarized Electron [J]. Chin. Phys. Lett., 2004, 21(4): 598-600. [7] JIN Qingyuan, XU Yongbing, ZHAI Ya, LU Mu, BIE Qingshan, JIANG Shulin, ZHAI Hongru. Spin Wave Resonance in Fe/Cu Compositionally Modulated Films [J]. Chin. Phys. Lett., 1994, 11(1): 53-56. [8] X. M. Qiu, Z. J. Wang. The η-Pairing Superconductivity in Spin-Density Wave Background [J]. Chin. Phys. Lett., 1993, 10(10): 616-619. [9] HE Yuquan, CHI Ruidong, YU Jinlong. Lyapunov Exponent Spectrum for Two-Mode Model in Spin-Wave Chaos [J]. Chin. Phys. Lett., 1992, 9(8): 435-437. [10] MA Hong-ru, TSAI Chien-hua. SPIN WAVES IN MAGNETIC SUPERLATTICES [J]. Chin. Phys. Lett., 1984, 1(2): 92-94.