[1] | Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y and Hwang H Y 2019 Nature 572 624 | Superconductivity in an infinite-layer nickelate
[2] | Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F and Hwang H Y 2020 Nano Lett. 20 5735 | A Superconducting Praseodymium Nickelate with Infinite Layer Structure
[3] | Lee K, Goodge B H, Li D, Osada M, Wang B Y, Cui Y, Kourkoutis L F and Hwang H Y 2020 APL Mater. 8 041107 | Aspects of the synthesis of thin film superconducting infinite-layer nickelates
[4] | Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, Kourkoutis L F and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 | Superconducting Dome in Infinite Layer Films
[5] | Zeng S, Tang C S, Yin X, Li C, Huang Z, Hu J, Liu W, Omar C J, Jani H, Lim Z S, Han K, Wan D, Yang P, Wee A T S and Ariando A 2020 Phys. Rev. Lett. 125 147003 | Phase Diagram and Superconducting Dome of Infinite-Layer Thin Films
[6] | Li Q, He C, Si J, Zhu X, Zhang Y and Wen H H 2020 Commun. Mater. 1 16 | Absence of superconductivity in bulk Nd1−xSrxNiO2
[7] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, Gallington L C, Ren Y, Rosenkranz S, Mitchell J F and Phelan D 2020 Phys. Rev. Mater. 4 084409 | Synthesis and characterization of bulk and
[8] | Goodge B H, Li D, Lee K, Osada M, Wang B Y, Sawatzky G A, Hwang H Y and Kourkoutis L F 2021 Proc. Natl. Acad. Sci. USA 118 e2007683118 | Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates
[9] | Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K and Arita R 2019 Phys. Rev. B 100 205138 | Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor
[10] | Choi M Y, Lee K W and Pickett W E 2020 Phys. Rev. B 101 020503(R) | Role of states in infinite-layer
[11] | Botana A S and Norman M R 2020 Phys. Rev. X 10 011024 | Similarities and Differences between and and Implications for Superconductivity
[12] | Zhou T, Gao Y and Wang Z D 2020 Sci. Chin. Phys. Mech. & Astron. 63 287412 | Spin excitations in nickelate superconductors
[13] | Wu X, Sante D D, Schwemmer T, Hanke W, Hwang H Y, Raghu S and Thomale R 2020 Phys. Rev. B 101 060504(R) | Robust -wave superconductivity of infinite-layer nickelates
[14] | Adhikary P, Bandyopadhyay S, Das T, Dasgupta I and Saha-Dasgupta T 2020 Phys. Rev. B 102 100501(R) | Orbital-selective superconductivity in a two-band model of infinite-layer nickelates
[15] | Liu Z, Ren Z, Zhu W, Wang Z and Yang J 2020 npj Quantum Mater. 5 31 | Electronic and magnetic structure of infinite-layer NdNiO2: trace of antiferromagnetic metal
[16] | Lechermann F 2020 Phys. Rev. B 101 081110(R) | Late transition metal oxides with infinite-layer structure: Nickelates versus cuprates
[17] | Krishna J, LaBollita H, Fumega A O, Pardo V and Botana A S 2020 Phys. Rev. B 102 224506 | Effects of Sr doping on the electronic and spin-state properties of infinite-layer nickelates: Nature of holes
[18] | Zhang G M, Zhang Y and Zhang F C 2020 Phys. Rev. B 101 020501(R) | Self-doped Mott insulator for parent compounds of nickelate superconductors
[19] | Sakakibara H, Usui H, Suzuki K, Kotani T, Aoki H and Kuroki K 2020 Phys. Rev. Lett. 125 077003 | Model Construction and a Possibility of Cupratelike Pairing in a New Nickelate Superconductor
[20] | Zhang H, Jin L, Wang S, Xi B, Shi X, Ye F and Ming J W 2020 Phys. Rev. Res. 2 013214 | Effective Hamiltonian for nickelate oxides
[21] | Lechermann F 2020 Phys. Rev. X 10 041002 | Multiorbital Processes Rule the Normal State
[22] | Petocchi F, Christiansson V, Nilsson F, Aryasetiawan F and Werner P 2020 Phys. Rev. X 10 041047 | Normal State of from Self-Consistent
[23] | Lee K W and Pickett W E 2004 Phys. Rev. B 70 165109 | Infinite-layer : is not
[24] | Wan X, Ivanov V, Resta G, Leonov I and Savrasov S Y 2021 Phys. Rev. B 103 075123 | Exchange interactions and sensitivity of the Ni two-hole spin state to Hund's coupling in doped
[25] | Wang Y, Kang C J, Miao H and Kotliar J 2020 Phys. Rev. B 102 161118(R) | Hund's metal physics: From to
[26] | Kang C J and Kotliar G 2020 arXiv:2007.15383 [cond-mat.str-el] | Optical properties of the infinite-layer La$_{1-x}$Sr$_{x}$NiO$_{2}$ and hidden Hund's physics
[27] | Karp J, Hampel A, Zingl M, Botana A S, Park H, Norman M R and Millis A J 2020 Phys. Rev. B 102 245130 | Comparative many-body study of and
[28] | Hepting M, Li D, Jia C J, Lu H, Paris E, Tseng Y, Feng X, Osada M, Been E, Hikita Y, Chuang Y D, Hussain Z, Zhou K J, Nag A, Garcia-Fernandez M, Rossi M, Huang H Y, Huang D J, Shen Z X, Schmitt T, Hwang H Y, Moritz B, Zaanen J, Devereaux T P and Lee W S 2020 Nat. Mater. 19 381 | Electronic structure of the parent compound of superconducting infinite-layer nickelates
[29] | Ryee S, Yoon H, Kim T J, Jeong M Y and Han M J 2020 Phys. Rev. B 101 064513 | Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate
[30] | Hu L H and Wu C 2019 Phys. Rev. Res. 1 032046(R) | Two-band model for magnetism and superconductivity in nickelates
[31] | Gu Y, Zhu S, Wang X, Hu J and Chen H 2020 Commun. Phys. 3 84 | A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates
[32] | Zhang Y H and Vishwanath A 2020 Phys. Rev. Res. 2 023112 | Type-II model in superconducting nickelate
[33] | Wang Z, Zhang G M, Yang Y and Zhang F C 2020 Phys. Rev. B 102 220501(R) | Distinct pairing symmetries of superconductivity in infinite-layer nickelates
[34] | Gu Q, Li Y, Wan S, Li H, Guo H, Yang H, Li Q, Zhu X, Pan X, Nie Y and Wen H H 2020 Nat. Commun. 11 6027 | Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films
[35] | Tinkham M 1996 Introduction to Superconductivity 2nd edn (New York: McGraw-Hill, Inc) |
[36] | Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 295 | Temperature and Purity Dependence of the Superconducting Critical Field, . III. Electron Spin and Spin-Orbit Effects
[37] | Ruggiero S T, Barbee T W and Beasley M R 1980 Phys. Rev. Lett. 45 1299 | Superconductivity in Quasi-Two-Dimensional Layered Composites
[38] | Sarma G 1963 J. Phys. Chem. Solids 24 1029 | On the influence of a uniform exchange field acting on the spins of the conduction electrons in a superconductor
[39] | Maki K 1966 Phys. Rev. 148 362 | Effect of Pauli Paramagnetism on Magnetic Properties of High-Field Superconductors
[40] | Helfand E and Werthamer N R 1966 Phys. Rev. 147 288 | Temperature and Purity Dependence of the Superconducting Critical Field, . II
[41] | Brison J P, Keller N, Vernière A, Lejay P, Schmidt L, Buzdin A, Flouquet J, Julian S R and Lonzarich G G 1995 Physica C 250 128 | Anisotropy of the upper critical field in URu2Si2 and FFLO state in antiferromagnetic superconductors
[42] | Buzdin A I and Brison J P 1996 Europhys. Lett. 35 707 | Non-uniform state in 2D superconductors
[43] | Bianchi A, Movshovich R, Capan C, Pagliuso P G and Sarrao J L 2003 Phys. Rev. Lett. 91 187004 | Possible Fulde-Ferrell-Larkin-Ovchinnikov Superconducting State in
[44] | Radovan H A, Fortune N A, Murphy T P, Hannahs S T, Palm E C, Tozer S W and Hall D 2003 Nature 425 51 | Magnetic enhancement of superconductivity from electron spin domains
[45] | Kumagai K, Saitoh M, Oyaizu T, Furukawa Y, Takashima S, Nohara M, Takagi H and Matsuda Y 2006 Phys. Rev. Lett. 97 227002 | Fulde-Ferrell-Larkin-Ovchinnikov State in a Perpendicular Field of Quasi-Two-Dimensional
[46] | Matsuda Y and Shimahara H 2007 J. Phys. Soc. Jpn. 76 051005 | Fulde–Ferrell–Larkin–Ovchinnikov State in Heavy Fermion Superconductors
[47] | Agosta C C, Martin C, Radovan H A, Palm E C, Murphy T P, Tozer S W, Cooley J C, Schlueter J A and Petrovic C 2006 J. Phys. Chem. Solids 67 586 | Penetration depth studies of organic and heavy fermion superconductors in the Pauli paramagnetic limit
[48] | Singleton J, Symington J A, Nam M S, Ardavan A, Kurmoo M and Day P 2000 J. Phys.: Condens. Matter 12 L641 | Observation of the Fulde-Ferrell-Larkin-Ovchinnikov state in the quasi-two-dimensional organic superconductor κ-(BEDT-TTF) 2 Cu(NCS) 2 (BEDT-TTF=bis(ethylene-dithio)tetrathiafulvalene)
[49] | Coniglio W A, Winter L E, Cho K, Agosta C C, Fravel B and Montgomery L K 2011 Phys. Rev. B 83 224507 | Superconducting phase diagram and FFLO signature in -(BETS) GaCl from rf penetration depth measurements
[50] | Agosta C C, Jin J, Coniglio W A, Smith B E, Cho K, Stroe I, Martin C, Tozer S W, Murphy T P, Palm E C, Schlueter J A and Kurmoo M 2012 Phys. Rev. B 85 214514 | Experimental and semiempirical method to determine the Pauli-limiting field in quasi-two-dimensional superconductors as applied to -(BEDT-TTF) Cu(NCS) : Strong evidence of a FFLO state
[51] | Mayaffre H, Krämer S, Horvatić M, Berthier C, Miyagawa K, Kanoda K and Mitrović V F 2014 Nat. Phys. 10 928 | Evidence of Andreev bound states as a hallmark of the FFLO phase in κ-(BEDT-TTF)2Cu(NCS)2
[52] | Agosta C C, Fortune N A, Hannahs S T, Gu S, Liang L, Park J H and Schleuter J A 2017 Phys. Rev. Lett. 118 267001 | Calorimetric Measurements of Magnetic-Field-Induced Inhomogeneous Superconductivity Above the Paramagnetic Limit
[53] | Wosnitza J 2018 Ann. Phys. 530 1700282 | FFLO States in Layered Organic Superconductors
[54] | Agosta C C 2018 Crystals 8 285 | Inhomogeneous Superconductivity in Organic and Related Superconductors
[55] | Klein T, Braithwaite D, Demuer A, Knafo W, Lapertot G, Marcenat C, Rodière P, Sheikin I, Strobel P, Sulpice A and Toulemonde P 2010 Phys. Rev. B 82 184506 | Thermodynamic phase diagram of single crystals in fields up to 28 tesla
[56] | Gurevich A 2011 Rep. Prog. Phys. 74 124501 | Iron-based superconductors at high magnetic fields
[57] | Gurevich A 2010 Phys. Rev. B 82 184504 | Upper critical field and the Fulde-Ferrel-Larkin-Ovchinnikov transition in multiband superconductors
[58] | Fulde P and Ferrell R A 1964 Phys. Rev. 135 A550 | Superconductivity in a Strong Spin-Exchange Field
[59] | Larkin A I and Ovchinnikov Y N 1964 Zh. Eksp. Teor. Fiz. 47 1136; [1965 Sov. Phys. JETP 20 762] |
[60] | Blatter G, Geshkenbein V B and Larkin A I 1992 Phys. Rev. Lett. 68 875 | From isotropic to anisotropic superconductors: A scaling approach
[61] | Wang Z S, Luo H Q, Ren C and Wen H H 2008 Phys. Rev. B 78 140501 | Upper critical field, anisotropy, and superconducting properties of single crystals
[62] | Li C H, Shen B, Han F, Zhu X Y and Wen H H 2011 Phys. Rev. B 83 184521 | Transport properties and anisotropy of Rb Fe Se single crystals
[63] | Liu J Z, Fang D L, Wang Z Y, Xing J, Du Z Y, Li S, Zhu X Y, Yang H and Wen H H 2014 Europhys. Lett. 106 67002 | Giant superconducting fluctuation and anomalous semiconducting normal state in NdO 1−x F x Bi 1−y S 2 single crystals
[64] | Jovanović V P, Li Z Z and Raffy H 2009 Phys. Rev. B 80 024501 | Resistive upper critical fields and anisotropy of an electron-doped infinite-layer cuprate
[65] | Smylie M P, Koshelev A E, Willa K, Willa R, Kwok W K, Bao J K, Chung D Y, Kanatzidis M G, Singleton J, Balakirev F F, Hebbeker H, Niraula P, Bokari E, Kayani A and Welp U 2019 Phys. Rev. B 100 054507 | Anisotropic upper critical field of pristine and proton-irradiated single crystals of the magnetically ordered superconductor
[66] | Stewart G R 2011 Rev. Mod. Phys. 83 1589 | Superconductivity in iron compounds
[67] | Wang B Y, Li D, Goodge B H, Lee K, Osada M, Harvey S P, Kourkoutis L F, Beasley M R and Hwang H Y 2020 arXiv:2012.06560 [cond-mat.supr-con] | Isotropic Pauli-Limited Superconductivity in the Infinite Layer Nickelate Nd$_{0.775}$Sr$_{0.225}$NiO$_{2}$