Express Letter
Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene
-
Abstract
Twisting two layers into a magic angle (MA) of ∼1.1∘ is found essential to create low energy flat bands and the resulting correlated insulating, superconducting, and magnetic phases in twisted bilayer graphene (TBG). While most of previous works focus on revealing these emergent states in MA-TBG, a study of the twist angle dependence, which helps to map an evolution of these phases, is yet less explored. Here, we report a magneto-transport study on one non-magic angle TBG device, whose twist angle θ changes from 1.25∘ at one end to 1.43∘ at the other. For θ=1.25∘ we observe an emergence of topological insulating states at hole side with a sequence of Chern number |C|=4−|v|, where v is the number of electrons (holes) in moiré unite cell. When θ>1.25∘, the Chern insulator from flat band disappears and evolves into fractal Hofstadter butterfly quantum Hall insulator where magnetic flux in one moiré unite cell matters. Our observations will stimulate further theoretical and experimental investigations on the relationship between electron interactions and non-trivial band topology. -
-
References
[1] Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 doi: 10.1073/pnas.1108174108[2] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C and Jarillo-Herrero P 2018 Nature 556 80 doi: 10.1038/nature26154[3] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2018 Nature 556 43 doi: 10.1038/nature26160[4] Yankowitz M, Chen S, Polshyn H, Zhang Y, Watanabe K, Taniguchi T, Graf D, Young A F and Dean C R 2019 Science 363 1059 doi: 10.1126/science.aav1910[5] Lu X, Stepanov P, Yang W, Xie M, Aamir M A, Das I, Urgell C, Watanabe K, Taniguchi T, Zhang G, Bachtold A, MacDonald A H and Efetov D K 2019 Nature 574 653 doi: 10.1038/s41586-019-1695-0[6] Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, Oppen F V, Watanabe K, Taniguchi T and Nadj-Perge S 2019 Nat. Phys. 15 1174 doi: 10.1038/s41567-019-0606-5[7] Kerelsky A, McGilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A and Pasupathy A N 2019 Nature 572 95 doi: 10.1038/s41586-019-1431-9[8] Xie Y, Lian B, Jäck B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2019 Nature 572 101 doi: 10.1038/s41586-019-1422-x[9] Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J and Andrei E Y 2019 Nature 573 91 doi: 10.1038/s41586-019-1460-4[10] Zhang Y H, Mao D, Cao Y, Jarillo-Herrero P and Senthil T 2019 Phys. Rev. B 99 075127 doi: 10.1103/PhysRevB.99.075127[11] Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A and Goldhaber-Gordon D 2019 Science 365 605 doi: 10.1126/science.aaw3780[12] Serlin M, Tschirhart C L, Polshyn H, Zhang Y, Zhu J, Watanabe K, Taniguchi T, Balents L and Young A F 2020 Science 367 900 doi: 10.1126/science.aay5533[13] Cao Y, Luo J Y, Fatemi V, Fang S, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E and Jarillo-Herrero P 2016 Phys. Rev. Lett. 117 116804 doi: 10.1103/PhysRevLett.117.116804[14] Kim K, DaSilvab A, Huangc S, Fallahazada B, Larentisa S, Taniguchid T, Watanabe K, LeRoyc B J, MacDonald A H and Tutuc E 2017 Proc. Natl. Acad. Sci. USA 114 3364 doi: 10.1073/pnas.1620140114[15] Polshyn H, Zhu J, Kumar M A, Zhang Y, Yang F, Tschirhart C L, Serlin M, Watanabe K, Taniguchi T, MacDonald A H and Young A F 2020 arXiv:2004.11353v1[16] Chen S, He M, Zhang Y H, Hsieh V, Fei Z, Watanabe K, Taniguchi T, Cobden D H, Xu X, Dean C R and Yankowitz M 2020 arXiv:2004.11340v1[17] Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T, Shi Z, Senthil T, Goldhaber-Gordon D, Zhang Y and Wang F 2020 Nature 579 56 doi: 10.1038/s41586-020-2049-7[18] Wu S, Zhang Z, Watanabe K, Taniguchi T and Andrei E Y 2020 arXiv:2007.03735[19] Nuckolls K P, Oh M, Wong D, Lian B, Watanabe K, Taniguchi T, Bernevig B A and Yazdani A 2020 arXiv:2007.03810[20] Saito Y, Ge J, Rademaker L, Watanabe K, Taniguchi T, Abanin D A and Young A F 2020 arXiv:2007.06115[21] Das I, Lu X, Herzog-Arbeitman J, Song Z D, Watanabe K, Taniguchi T, Bernevig B A and Efetov D K 2020 arXiv:2007.13390[22] Liu J, Ma Z, Gao J and Dai X 2019 Phys. Rev. X 9 031021 doi: 10.1103/PhysRevX.9.031021[23] Bistritzer R and MacDonald A H 2011 Phys. Rev. B 84 035440 doi: 10.1103/PhysRevB.84.035440[24] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M, Taniguchi T, Watanabe K, Shepard K L, Hone J and Kim P 2013 Nature 497 598 doi: 10.1038/nature12186[25] Ponomarenko L A, Gorbachev R V, Yu G L, Elias D C, Jalil R, Patel A A, Mishchenko A, Mayorov A S, Woods C R, Wallbank J R, Mucha-Kruczynski M, Piot B A, Potemski M, Grigorieva I V, Novoselov K S, Guinea F, Fal'ko V I and Geim A K 2013 Nature 497 594 doi: 10.1038/nature12187[26] Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P and Ashoori R C 2013 Science 340 1427 doi: 10.1126/science.1237240[27] Yu G L, Gorbachev R V, Tu J S, Kretinin A V, Cao Y, Jalil R, Withers F, Ponomarenko L A, Piot B A, Potemski M, Elias D C, Chen X, Watanabe K, Taniguchi T, Grigorieva I V, Novoselov K S, Fal'ko V I, Geim A K and Mishchenko A 2014 Nat. Phys. 10 525 doi: 10.1038/nphys2979[28] Yang W, Lu X, Chen G, Wu S, Xie G, Cheng M, Wang D, Yang R, Shi D, Watanabe K, Taniguchi T, Voisin C, Plaçais B, Zhang Y and Zhang G 2016 Nano Lett. 16 2387 doi: 10.1021/acs.nanolett.5b05161[29] Choi Y, Kim H, Peng Y, Thomson A, Lewandowski C, Polski R, Zhang Y, Arora H S, Watanabe K, Taniguchi T, Alicea J and Nadj-Perge S 2020 arXiv:2008.11746[30] Park J M, Cao Y, Watanabe K, Taniguchi T and Jarillo-Herrero P 2020 arXiv:2008.12296[31] Liu J, Liu J and Dai X 2019 Phys. Rev. B 99 155415 doi: 10.1103/PhysRevB.99.155415[32] Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602 doi: 10.1103/PhysRevLett.96.256602[33] Young A F, Dean C R, Wang L, Ren H, Cadden-Zimansky P, Watanabe K, Taniguchi T, Hone J, Shepard K L and Kim P 2012 Nat. Phys. 8 550 doi: 10.1038/nphys2307[34] Lucignano P, Cataudella D A V, Ninno D and Cantele G 2019 Phys. Rev. B 99 195419 doi: 10.1103/PhysRevB.99.195419[35] Angeli M, Tosatti E and Fabrizio M 2019 Phys. Rev. X 9 041010 doi: 10.1103/PhysRevX.9.041010[36] Kumar R K, Chen X, Auton G H, Mishchenko A, Bandurin D A, Morozov S V, Cao Y, Khestanova E, Shalom M B, Kretinin A V, Novoselov K S, Eaves L, Grigorieva I V, Ponomarenko L A, Fal'ko V I and Geim A K 2017 Science 357 181 doi: 10.1126/science.aal3357[37] Lee J Y, Khalaf E, Liu S, Liu X, Hao Z, Kim P and Vishwanath A 2019 Nat. Commun. 10 5333 doi: 10.1038/s41467-019-12981-1[38] Song Z D, Sun S, Xu Y F, Nie S M, Weng H M, Fang Z and Dai X 2015 arXiv:1512.05084[39] Koshino M 2011 Phys. Rev. B 84 125427 doi: 10.1103/PhysRevB.84.125427 -
Related Articles
[1] Jiawei Hu, Shiyu Zhu, Qianying Hu, Yunhao Wang, Chengmin Shen, Haitao Yang, Xiaoshan Zhu, Qing Huan, Yang Xu, Hong-Jun Gao. Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2024, 41(3): 037401. doi: 10.1088/0256-307X/41/3/037401 [2] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2022, 39(4): 047403. doi: 10.1088/0256-307X/39/4/047403 [3] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene [J]. Chin. Phys. Lett., 2022, 39(3): 037301. doi: 10.1088/0256-307X/39/3/037301 [4] Xu Zhang, Gaopei Pan, Yi Zhang, Jian Kang, Zi Yang Meng. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2021, 38(7): 077305. doi: 10.1088/0256-307X/38/7/077305 [5] WANG Tao, GUO Qing, AO Zhi-Min, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption [J]. Chin. Phys. Lett., 2011, 28(11): 117302. doi: 10.1088/0256-307X/28/11/117302 [6] LIU Yan, AO Zhi-Min, WANG Tao, WANG Wen-Bo, SHENG Kuang, YU Bin. Transformation from AA to AB-Stacked Bilayer Graphene on α−SiO2 under an Electric Field [J]. Chin. Phys. Lett., 2011, 28(8): 087303. doi: 10.1088/0256-307X/28/8/087303 [7] WANG Lin-Jun, CAO Gang, TU Tao, LI Hai-Ou, ZHOU Cheng, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Ground States and Excited States in a Tunable Graphene Quantum Dot [J]. Chin. Phys. Lett., 2011, 28(6): 067301. doi: 10.1088/0256-307X/28/6/067301 [8] LI Xiao-Wei. Heat Transport in Graphene Ferromagnet-Insulator-Superconductor Junctions [J]. Chin. Phys. Lett., 2011, 28(4): 047401. doi: 10.1088/0256-307X/28/4/047401 [9] OUYANG Fang-Ping, CHEN Li-Jian, XIAO Jin, ZHANG Hua. Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study [J]. Chin. Phys. Lett., 2011, 28(4): 047304. doi: 10.1088/0256-307X/28/4/047304 [10] SHEN Yi-min, KAJI Hironori, HORII Fumitaka. An Analytical Expression of Magic Angle Spinning Nuclear Magnetic Resonance Free Induction Decay in Two-Site Exchange Problem [J]. Chin. Phys. Lett., 1998, 15(6): 453-454. -
Supplements
Other Related Supplements
-
Cover image
71KB
-
-
Cited by
Periodical cited type(24)
1. Tian, Z.-Y., Li, S.-Y., Zhou, H.-T. et al. Moiré physics in two-dimensional materials: Novel quantum phases and electronic properties. Chinese Physics B, 2025, 34(2): 027301. DOI:10.1088/1674-1056/ad9e96 2. Yang, S., Chen, J., Liu, C.-F. et al. Evolution of flat bands in MoSe2/WSe2 moiré lattices: A study combining machine learning and band unfolding methods. Physical Review B, 2024, 110(23): 235410. DOI:10.1103/PhysRevB.110.235410 3. Xue, Y., Wang, Y., Jiang, Y. Novel States Induced by Superlattice Structures in Twisted Two-Dimensional Heterostructures | [超晶格结构在二维转角异质结中产生的新奇物态]. Zhenkong Kexue yu Jishu Xuebao/Journal of Vacuum Science and Technology, 2024, 44(4): 279-305. DOI:10.13922/j.cnki.cjvst.202310015 4. Wang, R., Song, Z. Flat Band and η-Pairing States in a One-Dimensional Moiré Hubbard Model. Chinese Physics Letters, 2024, 41(4): 047101. DOI:10.1088/0256-307X/41/4/047101 5. Lu, X., Xie, B., Yang, Y. et al. Magic Momenta and Three-Dimensional Landau Levels from a Three-Dimensional Graphite Moiré Superlattice. Physical Review Letters, 2024, 132(5): 056601. DOI:10.1103/PhysRevLett.132.056601 6. de Vries, F.K., Slizovskiy, S., Tomić, P. et al. Kagome Quantum Oscillations in Graphene Superlattices. Nano Letters, 2024, 24(2): 601-606. DOI:10.1021/acs.nanolett.3c03524 7. Yang, W., Zhang, G. Hofstadter butterfly in graphene. Encyclopedia of Condensed Matter Physics, 2024. DOI:10.1016/B978-0-323-90800-9.00054-8 8. Huang, Y.. Topological Floquet flat bands in irradiated alternating twist multilayer graphene. Physical Review B, 2023, 108(16): 165139. DOI:10.1103/PhysRevB.108.165139 9. Xie, B., Liu, J. Lattice distortions, moire phonons, and relaxed electronic band structures in magic-angle twisted bilayer graphene. Physical Review B, 2023, 108(9): 094115. DOI:10.1103/PhysRevB.108.094115 10. Herzog-Arbeitman, J., Song, Z.-D., Elcoro, L. et al. Hofstadter Topology with Real Space Invariants and Reentrant Projective Symmetries. Physical Review Letters, 2023, 130(23): 236601. DOI:10.1103/PhysRevLett.130.236601 11. Wang, M., Shan, W., Wang, H. Unique Electronic Properties of the Twisted Bilayer Graphene. Physica Status Solidi (B) Basic Research, 2023, 260(5): 2200344. DOI:10.1002/pssb.202200344 12. Zhang, S., Xie, B., Wu, Q. et al. Chiral Decomposition of Twisted Graphene Multilayers with Arbitrary Stacking. Nano Letters, 2023, 23(7): 2921-2926. DOI:10.1021/acs.nanolett.3c00275 13. Zhang, S.-H., Xie, B., Peng, R. et al. Novel electrical properties of moiré graphene systems | [莫尔石墨烯体系的新奇电学性质]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(6): 067302. DOI:10.7498/aps.72.20230120 14. Wu, F., Li, L., Xu, Q. et al. Coupled Ferroelectricity and Correlated States in a Twisted Quadrilayer MoS2 Moiré Superlattice. Chinese Physics Letters, 2023, 40(4): 047303. DOI:10.1088/0256-307X/40/4/047303 15. Liu, L., Zhang, S., Chu, Y. et al. Isospin competitions and valley polarized correlated insulators in twisted double bilayer graphene. Nature Communications, 2022, 13(1): 3292. DOI:10.1038/s41467-022-30998-x 16. Liu, X., Peng, R., Sun, Z. et al. Moiré Phonons in Magic-Angle Twisted Bilayer Graphene. Nano Letters, 2022, 22(19): 7791-7797. DOI:10.1021/acs.nanolett.2c02010 17. Zhan, Z., Zhang, Y.-L., Yuan, S.-J. Lattice relaxation and substrate effects of graphene moiré superlattice | [石墨烯莫尔超晶格的晶格弛豫与衬底效应]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(18): 187302. DOI:10.7498/aps.71.20220872 18. Chu, Y., Liu, L., Ji, Y. et al. Observation of quadratic magnetoresistance in twisted double bilayer graphene. Chinese Physics B, 2022, 31(10): 107201. DOI:10.1088/1674-1056/ac6866 19. Chen, R., Wang, Y.-F., Wang, Y.-X. et al. First-principles study of transition metal atoms X (X = Mn, Tc, Re) doped two-dimensional WS2 materials | [过渡金属原子 X (X = Mn, Tc, Re) 掺杂二维 WS2 第一性原理研究]. Wuli Xuebao/Acta Physica Sinica, 2022, 71(12): 127301. DOI:10.7498/aps.71.20212439 20. Liu, C., Wang, J. Spectroscopic Evidence for Electron Correlations in Epitaxial Bilayer Graphene with Interface-Reconstructed Superlattice Potentials. Chinese Physics Letters, 2022, 39(7): 077301. DOI:10.1088/0256-307X/39/7/077301 21. Ma, J.-J., Wang, Z.-Y., Xu, S.-G. et al. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene. Chinese Physics Letters, 2022, 39(4): 047403. DOI:10.1088/0256-307X/39/4/047403 22. Li, X.-F., Sun, R.-X., Wang, S.-Y. et al. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene. Chinese Physics Letters, 2022, 39(3): 037301. DOI:10.1088/0256-307X/39/3/037301 23. Zhang, X., Pan, G., Zhang, Y. et al. Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene. Chinese Physics Letters, 2021, 38(7): 077305. DOI:10.1088/0256-307X/38/7/077305 24. Ji, Y.-R., Chu, Y.-B., Xian, L.-D. et al. From magic angle twisted bilayer graphene to moiré superlattice quantum simulator | [从"魔角"石墨烯到摩尔超晶格量子模拟器]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(11): 118101. DOI:10.7498/aps.70.20210476 Other cited types(0)