[1] | Masataka H, Kohei S, Hisashi M, Yoshinao K, Akinori K, Akito K, Takekazu M and Shigenobu Y 2016 Sci. Technol. 31 034001 |
[2] | Jose M, Philippe G, Xavier P, Amador P T and Jose R 2014 IEEE Trans. Power Electron. 29 2155 | A Survey of Wide Bandgap Power Semiconductor Devices
[3] | Rahul K, Mukhopadhyay P, Bag A, Jana S K, Chakraborty A, Das S, Mahata M K and Biswas D 2015 Appl. Surf. Sci. 324 304 | Comparison of different pathways in metamorphic graded buffers on GaAs substrate: Indium incorporation with surface roughness
[4] | Zhao X Y, Huang J H, Zhuo Z Y, Xue Y Z, Ding K, Dou X M, Liu J and Sun B Q 2020 Chin. Phys. Lett. 37 044204 | Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure
[5] | Gao L, Liu Q L, Yang J W, Wu Y, Liu Z H, Qin S J, Ye X B, Jin S F, Li G D, Zhao H Z and Long Y W 2020 Chin. Phys. Lett. 37 066202 | High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs x
[6] | Zhou J J and Marco B 2016 Phys. Rev. B 94 201201 | Ab initio electron mobility and polar phonon scattering in GaAs
[7] | Zhang B W, Nie Z G, Wang B, Wang D K, Tang J L, Wang X H, Zhang J H, Xing G H, Zhang W C and Wei Z P 2020 Phys. Chem. Chem. Phys. 22 25819 | Ultrafast carrier relaxation dynamics of photoexcited GaAs and GaAs/AlGaAs nanowire array
[8] | Zhang S H, Xu W, Badalyan S M and Peeters F M 2013 Phys. Rev. B 87 075443 | Piezoelectric surface acoustical phonon limited mobility of electrons in graphene on a GaAs substrate
[9] | Takayuki S, Ryuichi M and Tohru O 2013 Phys. Rev. Lett. 111 057005 | Two-Dimensional Superconducting State of Monolayer Pb Films Grown on GaAs(110) in a Strong Parallel Magnetic Field
[10] | Frank D, Matthias G, Paul B, Ulrich F, Christian K, Thomas N D T, Eduard O, Gerald S, Michael S, Alexander W, AndreasW B, Rainer K, Matteo P, Nicolas B, Charlotte D, Eric G, Bruno G, Thierry S, Aurélie T, Thomas S, Anja D, Thomas H and Klaus S 2014 Prog. Photovoltaics 22 277 | Wafer bonded four-junction GaInP/GaAs//GaInAsP/GaInAs concentrator solar cells with 44.7% efficiency
[11] | Josef A C, David A T and Ray R L 2009 Nano Lett. 9 148 | GaAs Core−Shell Nanowires for Photovoltaic Applications
[12] | Jongseung Y, Sungjin J, Chun I S, Inhwa J, Hoon-Sik K, Matthew M, Etienne M, Li X L, James J C, Ungyu P and John A R 2010 Nature 465 329 | GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies
[13] | Sandroff C J, Hegde M S, Farrow L A, Bhat R J P and Chang C C 1990 J. Appl. Phys. 67 586 | Enhanced electronic properties of GaAs surfaces chemically passivated by selenium reactions
[14] | Muhammad U, Christopher A B, Andrew L and Eoin P O R 2011 Phys. Rev. B 84 245202 | Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs
[15] | Grillo S E, Ducarroir M, Nadal M, Tournie E and Faurie J P 2003 J. Phys. D 36 L5 | Nanoindentation of Si, GaP, GaAs and ZnSe single crystals
[16] | Lee J, Wu J, Shi M X, Jongseung Y, Sang-Il P, Li M, Liu Z J, Huang Y G and Rogers J A 2011 Adv. Mater. 23 986 | Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage
[17] | Laister D and Jenkins G M 1973 J. Mater. Sci. 8 1218 | Deformation of single crystals of gallium arsenide
[18] | Wang J K, Li S S, Wang N, Liu H J, Su T C, Hu M H, Han F, Yu K P and Ma H A 2019 Chin. Phys. Lett. 36 046101 | Synthesis and Characteristics of Type Ib Diamond Doped with NiS as an Additive
[19] | Lu K, Lu L and Suresh S 2009 Science 324 349 | Strengthening Materials by Engineering Coherent Internal Boundaries at the Nanoscale
[20] | Wang Z C, Mitsuhiro S, Keith P M, Gu L, Susumu T, Alexander L S and Yuichi I 2011 Nature 479 380 | Atom-resolved imaging of ordered defect superstructures at individual grain boundaries
[21] | Gao B, Gao P Y, Lu S H, Lv J, Wang Y C and Ma Y 2019 Sci. Bull. 64 301 | Interface structure prediction via CALYPSO method
[22] | Lu L, Shen Y F, Chen X H, Qian L H and Lu K 2004 Science 304 422 | Ultrahigh Strength and High Electrical Conductivity in Copper
[23] | Madhav R K, Guo J J, Shinoda Y, Fujita T, Hirata A, Singh J P, McCauley J W and Chen M W 2012 Nat. Commun. 3 1052 | Enhanced mechanical properties of nanocrystalline boron carbide by nanoporosity and interface phases
[24] | An Q, Goddard W A, Xie K Y, Sim G D, Hemker K J, Munhollon T, Toksoy M F and Haber R A 2016 Nano Lett. 16 7573 | Superstrength through Nanotwinning
[25] | Tian Y J, Xu B, Yu D L, Ma Y M, Wang Y B, Jiang Y B, Hu W T, Tang C C, Gao Y F, Luo K, Zhao Z S, Wang L M, Wen B, He J L and Liu Z Y 2013 Nature 493 385 | Ultrahard nanotwinned cubic boron nitride
[26] | Liu X Y, Zhang H and Cheng X L 2018 Chin. Phys. Lett. 35 116201 | Interaction between Dislocation and Twinning Boundary under Incremental Loading in α -Titanium
[27] | Lu L, Chen X, Huang X and Lu K 2009 Science 323 607 | Revealing the Maximum Strength in Nanotwinned Copper
[28] | Huang Q, Yu D L, Xu B, Hu W T, Ma Y M, Wang Y B, Zhao Z S, Wen B, He J L, Liu Z Y and Tian Y J 2014 Nature 510 250 | Nanotwinned diamond with unprecedented hardness and stability
[29] | Li B, Sun H and Chen C 2014 Nat. Commun. 5 4965 | Large indentation strain-stiffening in nanotwinned cubic boron nitride
[30] | Li G D, Sergey I M, Zhang Q J, An Q, Zhai P C and G J S 2017 Phys. Rev. Lett. 119 215503 | Enhanced Strength Through Nanotwinning in the Thermoelectric Semiconductor InSb
[31] | Kresse G and Furthmiiller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[32] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[33] | John P P, Kieron B and Matthias E 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[34] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[35] | Zhang Y, Sun H and Chen C 2004 Phys. Rev. Lett. 93 195504 | Superhard Cubic Compared to Diamond
[36] | Pan Z, Sun H and Chen C 2009 Phys. Rev. B 79 104102 | Indenter-angle-sensitive fracture modes and stress response at incipient plasticity
[37] | Pan Z, Sun H, Zhang Y and Chen C 2009 Phys. Rev. Lett. 102 055503 | Harder than Diamond: Superior Indentation Strength of Wurtzite BN and Lonsdaleite
[38] | Pan Z, Sun H and Chen C 2007 Phys. Rev. Lett. 98 135505 | Colossal Shear-Strength Enhancement of Low-Density Cubic by Nanoindentation
[39] | Qu N R, Wang H C, Li Q, Li Z P and Gao F M 2019 Chin. Phys. Lett. 36 036201 | An Orthorhombic Phase of Superhard o -BC 4 N *
[40] | Liu C, Zhai H, Sun Y, Gong W, Yan Y, Li Q and Zheng W 2018 Phys. Chem. Chem. Phys. 20 5952 | Strain-induced modulations of electronic structure and electron–phonon coupling in dense H 3 S
[41] | Li H, Hao Y, Sun D, Zhou D, Liu G, Wang H and Li Q 2019 Phys. Chem. Chem. Phys. 21 25859 | Mechanical properties and superconductivity in two-dimensional B 2 O under extreme strain
[42] | Gong W, Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. B 100 220102(R) | Unravelling the structure and strength of the highest boride of tungsten
[43] | Liu C, Song X, Li Q, Ma Y and Chen C 2019 Phys. Rev. Lett. 123 195504 | Smooth Flow in Diamond: Atomistic Ductility and Electronic Conductivity
[44] | Li Q, Zhou D, Zheng W, Ma Y and Chen C 2015 Phys. Rev. Lett. 115 185502 | Anomalous Stress Response of Ultrahard Compounds
[45] | Liu C, Song X, Li Q, Ma Y and Chen C 2020 Phys. Rev. Lett. 124 147001 | Superconductivity in Compression-Shear Deformed Diamond
[46] | Lu C, Gong W, Li Q and Chen C 2020 J. Phys. Chem. Lett. 11 9165 | Elucidating Stress–Strain Relations of ZrB 12 from First-Principles Studies
[47] | Blakemore J S 1982 J. Appl. Phys. 53 R123 | Semiconducting and other major properties of gallium arsenide
[48] | Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115 | Crystal structures and elastic properties of superhard and from first principles
[49] | Hill R 1952 Proc. Phys. Soc. London Sect. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[50] | Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 | Band parameters for III–V compound semiconductors and their alloys
[51] | Chen X Q, Niu H Y, Li D Z and Li Y Y 2011 Intermetallics 19 1275 | Modeling hardness of polycrystalline materials and bulk metallic glasses
[52] | Gao F M, He J L, Wu E D, Liu S M, Yu D L, Li D C, Zhang S Y and Tian Y J 2003 Phys. Rev. Lett. 91 015502 | Hardness of Covalent Crystals
[53] | Zhang M, Liu H, Li Q, Gao B, Wang Y, Li H, Chen C and Ma Y 2015 Phys. Rev. Lett. 114 015502 | Superhard in Cubic Diamond Structure
[54] | Li B, Sun H and Chen C 2016 Phys. Rev. Lett. 117 116103 | Extreme Mechanics of Probing the Ultimate Strength of Nanotwinned Diamond
[55] | Gong W, Wang M, Liu C, Qin Z, Liu Y, Zhang X, Li Q and Zheng W 2017 J. Phys. Chem. C 121 26457 | Pressure Driven Enhancement of Ideal Shear Strength in bc8-Carbon and Diamond
[56] | Chen T P, Chen F R, Chuang Y C, Guo Y D, Peng J G, Huang T S and Chen L J 1992 J. Cryst. Growth 118 109 | Study of twins in GaAs, GaP and InAs crystals
[57] | Tse J S, Klug D D and Gao F M 2006 Phys. Rev. B 73 140102R | Hardness of nanocrystalline diamonds
[58] | Zhao Z S, Xu B and Tian Y J 2016 Annu. Rev. Mater. Res. 46 383 | Recent Advances in Superhard Materials
[59] | Tahini H A, Chroneos A, Murphy S T, Schwingenschlögl U and Grimes R W 2013 J. Appl. Phys. 114 063517 | Vacancies and defect levels in III–V semiconductors
[60] | Philip P R, Stewart J C and David J T 2001 Phys. Rev. B 63 115206 | Density-functional calculations of semiconductor properties using a semiempirical exchange-correlation functional
[61] | Rashid A, S J H, Hadi A, Maqsood A and Fazal A 2007 Comput. Mater. Sci. 39 580 | Ab initio study of structural and electronic properties of III-arsenide binary compounds