[1] | Wan Y et al. 2017 Nucl. Fusion 57 102009 | Overview of the present progress and activities on the CFETR
[2] | Zhuang G et al. 2019 Nucl. Fusion 59 112010 | Progress of the CFETR design
[3] | Chen W and Wang Z 2020 Chin. Phys. Lett. 37 125001 | Energetic Particles in Magnetic Confinement Fusion Plasmas
[4] | Meneghini O et al. 2015 Nucl. Fusion 55 083008 | Integrated modeling applications for tokamak experiments with OMFIT
[5] | Lao L L et al. 1981 Phys. Fluids 24 1431 | Variational moment solutions to the Grad–Shafranov equation
[6] | Van Zeeland M A et al. 2011 Phys. Plasmas 5 056114 |
[7] | Heidbrink W W et al. 2017 Phys. Plasmas 24 056109 | Fast-ion transport by Alfvén eigenmodes above a critical gradient threshold
[8] | Pace D C et al. 2011 Nucl. Fusion 51 043012 | Transport of energetic ions due to sawteeth, Alfvén eigenmodes and microturbulence
[9] | Todo Y, Berk H L and Breizman B N 2010 Nucl. Fusion 50 084016 | Nonlinear magnetohydrodynamic effects on Alfvén eigenmode evolution and zonal flow generation
[10] | Todo Y et al. 2014 Nucl. Fusion 54 104012 | Multi-phase simulation of fast ion profile flattening due to Alfvén eigenmodes in a DIII-D experiment
[11] | Bass E M and Waltz R E 2010 Phys. Plasmas 17 112319 | Gyrokinetic simulations of mesoscale energetic particle-driven Alfvénic turbulent transport embedded in microturbulence
[12] | Fu G and Van Dam J W 1989 Phys. Fluids B: Plasma Phys. 1 1949 | Excitation of the toroidicity‐induced shear Alfvén eigenmode by fusion alpha particles in an ignited tokamak
[13] | He S, Waltz R E and Staebler G M 2017 Phys. Plasmas 24 072305 | Alfvén eigenmode stability and critical gradient energetic particle transport using the Trapped-Gyro-Landau-Fluid model
[14] | Bass E M and Waltz R E 2017 Phys. Plasmas 24 122302 | Nonlinear verification of a linear critical gradient model for energetic particle transport by Alfvén eigenmodes
[15] | Collins C S et al. 2017 Nucl. Fusion 57 086005 | Phase-space dependent critical gradient behavior of fast-ion transport due to Alfvén eigenmodes
[16] | Candy J and Waltz R E 2003 J. Comput. Phys. 186 545 | An Eulerian gyrokinetic-Maxwell solver
[17] | Waltz R E and Bass E M 2014 Nucl. Fusion 54 104006 | Prediction of the fusion alpha density profile in ITER from local marginal stability to Alfvén eigenmodes
[18] | Waltz R E et al. 2015 Nucl. Fusion 55 123012 | Development and validation of a critical gradient energetic particle driven Alfven eigenmode transport model for DIII-D tilted neutral beam experiments
[19] | He S and Waltz R E 2016 Nucl. Fusion 56 056004 | Kinetic transport simulation of energetic particles
[20] | Betti R and Freidberg J P 1992 Phys. Fluids B: Plasma Phys. 4 1465 | Stability of Alfvén gap modes in burning plasmas
[21] | Angioni C and Peeters A G 2008 Phys. Plasmas 15 052307 | Gyrokinetic calculations of diffusive and convective transport of α particles with a slowing-down distribution function
[22] | White R B and Chance M S 1984 Phys. Fluids 27 2455 | Hamiltonian guiding center drift orbit calculation for plasmas of arbitrary cross section
[23] | Lao L L et al. 1985 Nucl. Fusion 25 1611 | Reconstruction of current profile parameters and plasma shapes in tokamaks
[24] | Cheng C Z and Chance M S 1987 J. Comput. Phys. 71 124 | NOVA: A nonvariational code for solving the MHD stability of axisymmetric toroidal plasmas
[25] | Estrada-Mila C, Candy J and Waltz R E 2006 Phys. Plasmas 13 112303 | Turbulent transport of alpha particles in reactor plasmas
[26] | Van Zeeland M A et al. 2012 Nucl. Fusion 52 094023 | Alfvén eigenmode stability and fast ion loss in DIII-D and ITER reversed magnetic shear plasmas
[27] | Bass E M and Waltz R E 2020 Nucl. Fusion 60 016032 | Prediction of Alfvén eigenmode energetic particle transport in ITER scenarios with a critical gradient model