[1] | Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press) |
[2] | Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1 | Thermal conduction in classical low-dimensional lattices
[3] | Dhar A 2008 Adv. Phys. 57 457 | Heat transport in low-dimensional systems
[4] | Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896 | Heat Conduction in Chains of Nonlinear Oscillators
[5] | Wang L and Wang T 2011 Europhys. Lett. 93 54002 | Power-law divergent heat conductivity in one-dimensional momentum-conserving nonlinear lattices
[6] | Chang C W, Okawa D, Garcia H, Majumdar A and Zettl A 2008 Phys. Rev. Lett. 101 075903 | Breakdown of Fourier’s Law in Nanotube Thermal Conductors
[7] | Narayan O and Ramaswamy S 2002 Phys. Rev. Lett. 89 200601 | Anomalous Heat Conduction in One-Dimensional Momentum-Conserving Systems
[8] | Spohn H 2014 J. Stat. Phys. 154 1191 | Nonlinear Fluctuating Hydrodynamics for Anharmonic Chains
[9] | Hu B, Li B and Zhao H 1998 Phys. Rev. E 57 2992 | Heat conduction in one-dimensional chains
[10] | Hu B, Li B and Zhao H 2000 Phys. Rev. E 61 3828 | Heat conduction in one-dimensional nonintegrable systems
[11] | Aoki K and Kusnezov D 2000 Phys. Lett. A 265 250 | Bulk properties of anharmonic chains in strong thermal gradients: non-equilibrium φ4 theory
[12] | Rieder Z, Lebowitz J L and Lieb E 1967 J. Math. Phys. 8 1073 | Properties of a Harmonic Crystal in a Stationary Nonequilibrium State
[13] | Xu Y, Wang J S, Duan W, Gu B L and Li B 2008 Phys. Rev. B 78 224303 | Nonequilibrium Green’s function method for phonon-phonon interactions and ballistic-diffusive thermal transport
[14] | Feynman R P and Kleinert H 1986 Phys. Rev. A 34 5080 | Effective classical partition functions
[15] | He D, Buyukdagli S and Hu B 2008 Phys. Rev. E 78 061103 | Thermal conductivity of anharmonic lattices: Effective phonons and quantum corrections
[16] | He D, Buyukdagli S and Hu B 2009 Phys. Rev. B 80 104302 | Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices
[17] | Cao X, He D, Zhao H and Hu B 2015 AIP Adv. 5 053203 | Thermal expansion and its impacts on thermal transport in the FPU- α - β model
[18] | He D, Thingna J, Wang J S and Li B 2016 Phys. Rev. B 94 155411 | Quantum thermal transport through anharmonic systems: A self-consistent approach
[19] | He D, Thingna J and Cao J 2018 Phys. Rev. B 97 195437 | Interfacial thermal transport with strong system-bath coupling: A phonon delocalization effect
[20] | Alabiso C, Casartelli M and Marenzoni P 1995 J. Stat. Phys. 79 451 | Nearly separable behavior of Fermi-Pasta-Ulam chains through the stochasticity threshold
[21] | Alabiso C and Casartelli M 2001 J. Phys. A 34 1223 | Normal modes on average for purely stochastic systems
[22] | Gershgorin B, Lvov Y V and Cai D 2005 Phys. Rev. Lett. 95 264302 | Renormalized Waves and Discrete Breathers in -Fermi-Pasta-Ulam Chains
[23] | Li N, Tong P and Li B 2006 Europhys. Lett. 75 49 | Effective phonons in anharmonic lattices: Anomalous vs. normal heat conduction
[24] | Gershgorin B, Lvov Y V and Cai D 2007 Phys. Rev. E 75 046603 | Interactions of renormalized waves in thermalized Fermi-Pasta-Ulam chains
[25] | Li N, Tong P and Li B 2007 Europhys. Lett. 78 34001 | Temperature dependence of thermal conductivity in 1D nonlinear lattices
[26] | Li N, Li B and Flach S 2010 Phys. Rev. Lett. 105 054102 | Energy Carriers in the Fermi-Pasta-Ulam Lattice: Solitons or Phonons?
[27] | Li N and Li B 2013 Phys. Rev. E 87 042125 | Scaling of temperature-dependent thermal conductivities for one-dimensional nonlinear lattices
[28] | Liu S, Liu J, Hänggi P, Wu C and Li B 2014 Phys. Rev. B 90 174304 | Triggering waves in nonlinear lattices: Quest for anharmonic phonons and corresponding mean-free paths
[29] | Xu L and Wang L 2016 Phys. Rev. E 94 030101 | Dispersion and absorption in one-dimensional nonlinear lattices: A resonance phonon approach
[30] | Xu L and Wang L 2017 Phys. Rev. E 95 042138 | Resonance phonon approach to phonon relaxation time and mean free path in one-dimensional nonlinear lattices
[31] | Thomas J A, Turney J E, Iutzi R M, Amon C H and McGaughey A J H 2010 Phys. Rev. B 81 081411 | Predicting phonon dispersion relations and lifetimes from the spectral energy density
[32] | Feng T L and Ruan X L 2014 J. Nanomater. 2014 206370 | Prediction of Spectral Phonon Mean Free Path and Thermal Conductivity with Applications to Thermoelectrics and Thermal Management: A Review
[33] | Liu Y and He D 2019 Phys. Rev. E 100 052143 | Analytical measure of temperature for nonlinear dynamical systems
[34] | Fermi E, Pasta J and Ulam S 1965 Collected Papers of Enrico Fermi ed Segré E (Chicago: University of Chicago Press) vol 2 p 978 |
[35] | Pereverzev A 2003 Phys. Rev. E 68 056124 | Fermi-Pasta-Ulam lattice: Peierls equation and anomalous heat conductivity
[36] | Nickel B 2007 J. Phys. A 40 1219 | The solution to the 4-phonon Boltzmann equation for a 1D chain in a thermal gradient
[37] | Lukkarinen J and Spohn H 2008 Commun. Pure Appl. Math. 61 1753 | Anomalous energy transport in the FPU-β chain
[38] | Hu S, Chen J, Yang N and Li B 2017 Carbon 116 139 | Thermal transport in graphene with defect and doping: Phonon modes analysis
[39] | Liu Y and He D 2017 Phys. Rev. E 96 062119 | Anomalous interfacial temperature profile induced by phonon localization
[40] | Fang J, Qian X, Zhao C Y, Li B and Gu X 2020 Phys. Rev. E 101 022133 | Monitoring anharmonic phonon transport across interfaces in one-dimensional lattice chains