[1] | Simon C et al. 2010 Eur. Phys. J. D 58 1 | Quantum memories
[2] | Sangouard N, Simon C, de Riedmatten H and Gisin N 2011 Rev. Mod. Phys. 83 33 | Quantum repeaters based on atomic ensembles and linear optics
[3] | Bussieres F, Sangouard N, Afzelius M, de Riedmatten H, Simon C and Tittel W 2013 J. Mod. Opt. 60 1519 | Prospective applications of optical quantum memories
[4] | Northup T E and Blatt R 2014 Nat. Photon. 8 356 | Quantum information transfer using photons
[5] | Heshami K, England D G, Humphreys P C, Bustard P J, Acosta V M, Nunn J and Sussman B J 2016 J. Mod. Opt. 63 2005 | Quantum memories: emerging applications and recent advances
[6] | Wehner1 S, Elkouss D and Hanson R 2018 Science 362 eaam9288 | Quantum internet: A vision for the road ahead
[7] | Chow C W et al. 2007 Science 316 1316 | Functional Quantum Nodes for Entanglement Distribution over Scalable Quantum Networks
[8] | Ritter S et al. 2012 Nature 484 195 | An elementary quantum network of single atoms in optical cavities
[9] | Gao W B, Fallahi P, Togan E, Miguel-Sanchez J and Imamoglu A 2012 Nature 491 426 | Observation of entanglement between a quantum dot spin and a single photon
[10] | De Greve K et al. 2012 Nature 491 421 | Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength
[11] | Bernien H et al. 2013 Nature 497 86 | Heralded entanglement between solid-state qubits separated by three metres
[12] | de Riedmatten H, Afzelius M, Staudt M U, Simon C and Gisin N 2008 Nature 456 773 | A solid-state light–matter interface at the single-photon level
[13] | Zhong M et al. 2015 Nature 517 177 | Optically addressable nuclear spins in a solid with a six-hour coherence time
[14] | Usmani I, Afzelius M, de Riedmatten H and Gisin N 2010 Nat. Commun. 1 12 | Mapping multiple photonic qubits into and out of one solid-state atomic ensemble
[15] | Sinclair N et al. 2014 Phys. Rev. Lett. 113 053603 | Spectral Multiplexing for Scalable Quantum Photonics using an Atomic Frequency Comb Quantum Memory and Feed-Forward Control
[16] | Clausen C, Usmani I, Bussieres F, Sangouard N, Afzelius M, de Riedmatten H and Gisin N 2011 Nature 469 508 | Quantum storage of photonic entanglement in a crystal
[17] | Saglamyurek E, Sinclair N, Jin J, Slater J A, Oblak D, Bussieres F, George M, Ricken R, Sohler W and Tittel W 2011 Nature 469 512 | Broadband waveguide quantum memory for entangled photons
[18] | Clausen C, Bussieres F, Afzelius M and Gisin N 2012 Phys. Rev. Lett. 108 190503 | Quantum Storage of Heralded Polarization Qubits in Birefringent and Anisotropically Absorbing Materials
[19] | Gundogan M, Ledingham P M, Almasi A, Cristiani M and de Riedmatten H 2012 Phys. Rev. Lett. 108 190504 | Quantum Storage of a Photonic Polarization Qubit in a Solid
[20] | Zhou Z Q, Lin W B, Yang M, Li C F and Guo G C 2012 Phys. Rev. Lett. 108 190505 | Realization of Reliable Solid-State Quantum Memory for Photonic Polarization Qubit
[21] | Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Li C F and Guo G C 2015 Phys. Rev. Lett. 115 070502 | Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal
[22] | Afzelius M, Simon C, de Riedmatten H and Gisin N 2009 Phys. Rev. A 79 052329 | Multimode quantum memory based on atomic frequency combs
[23] | Gundogan M, Ledingham P M, Kutluer K, Mazzera M and de Riedmatten H 2015 Phys. Rev. Lett. 114 230501 | Solid State Spin-Wave Quantum Memory for Time-Bin Qubits
[24] | Jobez P et al. 2015 Phys. Rev. Lett. 114 230502 | Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory
[25] | Levitt M H and Freeman R 1979 J. Magn. Reson. 33 473 | NMR population inversion using a composite pulse
[26] | Tycko R, Cho H M, Schneider E and Pines A 1985 J. Magn. Reson. 61 90 | Composite pulses without phase distortion
[27] | Ichikawa T, Bando M, Kondo Y and Nakahara M 2011 Phys. Rev. A 84 062311 | Designing robust unitary gates: Application to concatenated composite pulses
[28] | Minar J, Sangouard N, Afzelius M, de Riedmatten H and Gisin N 2010 Phys. Rev. A 82 052309 | Universal quantum computer from a quantum magnet
[29] | Souza A M, Alvarez G A and Suter D 2011 Phys. Rev. Lett. 106 240501 | Robust Dynamical Decoupling for Quantum Computing and Quantum Memory
[30] | Genov G T, Schraft D, Halfmann T and Vitanov N V 2014 Phys. Rev. Lett. 113 043001 | Correction of Arbitrary Field Errors in Population Inversion of Quantum Systems by Universal Composite Pulses
[31] | Wang X et al. 2012 Nat. Commun. 3 997 | Composite pulses for robust universal control of singlet–triplet qubits
[32] | Kestner J P, Wang X, Bishop L S, Barnes E and Das S S 2013 Phys. Rev. Lett. 110 140502 | Noise-Resistant Control for a Spin Qubit Array
[33] | Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783 | Storage of Light in Atomic Vapor
[34] | Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413 | Long-distance quantum communication with atomic ensembles and linear optics
[35] | Hedges M P, Longdell J J, Li Y and Sellars M J 2010 Nature 465 1052 | Efficient quantum memory for light
[36] | Julsgaard B, Grezes C, Bertet P and Molmer K 2013 Phys. Rev. Lett. 110 250503 | Quantum Memory for Microwave Photons in an Inhomogeneously Broadened Spin Ensemble
[37] | Zhu X Y, Tu T, Guo A L, Zhou Z Q and Guo G C 2020 Chin. Phys. Lett. 37 020302 | Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator *