[1] | Baran V, Colonna M, Greco V and Di Toro M 2005 Phys. Rep. 410 335 | Reaction dynamics with exotic nuclei
[2] | Steiner A W, Prakash M, Lattimer J M and Ellis P J 2005 Phys. Rep. 411 325 | Isospin asymmetry in nuclei and neutron stars
[3] | Lattimer J M and Prakash M 2007 Phys. Rep. 442 109 | Neutron star observations: Prognosis for equation of state constraints
[4] | Li B A, Chen L W and Ko C M 2008 Phys. Rep. 464 113 | Recent progress and new challenges in isospin physics with heavy-ion reactions
[5] | Li B A and Han X 2013 Phys. Lett. B 727 276 | Constraining the neutron–proton effective mass splitting using empirical constraints on the density dependence of nuclear symmetry energy around normal density
[6] | Oertel M, Hempel M, Klähn T and Typel S 2017 Rev. Mod. Phys. 89 015007 | Equations of state for supernovae and compact stars
[7] | Li B A, Cai B J, Chen L W and Xu J 2018 Prog. Part. Nucl. Phys. 99 29 | Nucleon effective masses in neutron-rich matter
[8] | Xu C, Li B A and Chen L W 2010 Phys. Rev. C 82 054607 | Symmetry energy, its density slope, and neutron-proton effective mass splitting at normal density extracted from global nucleon optical potentials
[9] | Trippa L, Colò G and Vigezzi E 2008 Phys. Rev. C 77 061304(R) | Giant dipole resonance as a quantitative constraint on the symmetry energy
[10] | Reinhard P G and Nazarewicz W 2010 Phys. Rev. C 81 051303(R) | Information content of a new observable: The case of the nuclear neutron skin
[11] | Piekarewicz J, Agrawal B K, Colò G, Nazarewicz W, Paar N, Reinhard P G, Roca-Maza X and Vretenar D 2012 Phys. Rev. C 85 041302(R) | Electric dipole polarizability and the neutron skin
[12] | Vretenar D, Niu Y F, Paar N and Meng J 2012 Phys. Rev. C 85 044317 | Low-energy isovector and isoscalar dipole response in neutron-rich nuclei
[13] | Roca-Maza X, Brenna M, Colò G, Centelles M, Vi N X, Agrawal B K, Paar N, Vretenar D and Piekarewicz J 2013 Phys. Rev. C 88 024316 | Electric dipole polarizability in Pb: Insights from the droplet model
[14] | Colò G, Garg U and Sagawa H 2014 Eur. Phys. J. A 50 26 | Symmetry energy from the nuclear collective motion: constraints from dipole, quadrupole, monopole and spin-dipole resonances
[15] | Roca-Maza X, Vi N X, Centelles M, Agrawal B K, Colò G, Paar N, Piekarewicz J and Vretenar D 2015 Phys. Rev. C 92 064304 | Neutron skin thickness from the measured electric dipole polarizability in , , and
[16] | Zhang Z and Chen L W 2015 Phys. Rev. C 92 031301(R) | Electric dipole polarizability in as a probe of the symmetry energy and neutron matter around
[17] | Zheng H, Burrello S, Colonna M and Baran V 2016 Phys. Rev. C 94 014313 | Dipole response in neutron-rich nuclei with new Skyrme interactions
[18] | Xu J and Qin W T 2020 Phys. Rev. C 102 024306 | Nucleus giant resonances from an improved isospin-dependent Boltzmann-Uehling-Uhlenbeck transport approach
[19] | Zhang Z and Chen L W 2016 Phys. Rev. C 93 034335 | Isospin splitting of the nucleon effective mass from giant resonances in
[20] | Kong H Y, Xu J, Chen L W, Li B A and Ma Y G 2017 Phys. Rev. C 95 034324 | Constraining simultaneously nuclear symmetry energy and neutron-proton effective mass splitting with nucleus giant resonances using a dynamical approach
[21] | Brown B A 2000 Phys. Rev. Lett. 85 5296 | Neutron Radii in Nuclei and the Neutron Equation of State
[22] | Typel S and Brown B A 2001 Phys. Rev. C 64 027302 | Neutron radii and the neutron equation of state in relativistic models
[23] | Horowitz C J and Piekarewicz J 2001 Phys. Rev. Lett. 86 5647 | Neutron Star Structure and the Neutron Radius of
[24] | Furnstahl R J 2002 Nucl. Phys. A 706 85 | Neutron radii in mean-field models
[25] | Todd-Rutel B G and Piekarewicz J 2005 Phys. Rev. Lett. 95 122501 | Neutron-Rich Nuclei and Neutron Stars: A New Accurately Calibrated Interaction for the Study of Neutron-Rich Matter
[26] | Centelles M, Roca-Maza X, Viñas X and Warda M 2009 Phys. Rev. Lett. 102 122502 | Nuclear Symmetry Energy Probed by Neutron Skin Thickness of Nuclei
[27] | Zhang Z and Chen L W 2013 Phys. Lett. B 726 234 | Constraining the symmetry energy at subsaturation densities using isotope binding energy difference and neutron skin thickness
[28] | Agrawal B K, Malik T, De J N and Samaddar S K 2020 arXiv:2006.05758 [nucl-th] | Constraining nuclear matter parameters from correlation systematics:a mean-field perspective
[29] | Behera D, Tripathy S K, Routray T R and Behera B 2020 Phys. Scr. 95 105301 | Nuclear symmetry energy and neutron skin thickness of 208 Pb using a finite range effective interaction
[30] | Thiel M, Sfienti C, Piekarewicz J, Horowitz C J and Vanderhaeghen M 2019 J. Phys. G 46 093003 | Neutron skins of atomic nuclei: per aspera ad astra
[31] | Burgio G F and Vidaña I 2020 Universe 6 119 | The Equation of State of Nuclear Matter: From Finite Nuclei to Neutron Stars
[32] | Vi X, Centelles M, Roca-Maza X and Warda M 2014 Eur. Phys. J. A 50 27 | Density dependence of the symmetry energy from neutron skin thickness in finite nuclei
[33] | Roca-Maza X and Paar N 2018 Prog. Part. Nucl. Phys. 101 96 | Nuclear equation of state from ground and collective excited state properties of nuclei
[34] | Chen L W, Li B A, Ko C M and Xu J 2010 Phys. Rev. C 82 024321 | Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei
[35] | Chabanat E, Bonche P, Haensel P, Meyer J and Schaeffer R 1997 Nucl. Phys. A 627 710 | A Skyrme parametrization from subnuclear to neutron star densities
[36] | Vautherin D and Brink D M 1972 Phys. Rev. C 5 626 | Hartree-Fock Calculations with Skyrme's Interaction. I. Spherical Nuclei
[37] | Reinhard P G 1991 Computational Nuclear Physics 1: Nuclear Structure ed Langanke K, Maruhn J A and Koonin S E (New York: Springer-Verlag) chap 2 p 209 |
[38] | Colò G, Cao L, Van Gia N and Capelli L 2013 Comput. Phys. Commun. 184 142 | Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program
[39] | Dietrich S S and Berman B L 1988 At. Data Nucl. Data Tables 38 199 | Atlas of photoneutron cross sections obtained with monoenergetic photons
[40] | Tamii A, Poltoratska I, vonNeumann-Cosel P et al. 2011 Phys. Rev. Lett. 107 062502 | Complete Electric Dipole Response and the Neutron Skin in
[41] | Zenihiro J, Sakaguchi H, Murakami T, Yosoi M, Yasuda Y, Terashima S, Iwao Y, Takeda H, Itoh M, Yoshida H P and Uchida M 2010 Phys. Rev. C 82 044611 | Neutron density distributions of deduced via proton elastic scattering at MeV
[42] | Friedman E 2012 Nucl. Phys. A 896 46 | Neutron skins of 208Pb and 48Ca from pionic probes
[43] | Klos B et al. 2007 Phys. Rev. C 76 014311 | Neutron density distributions from antiprotonic and atoms
[44] | Brown B A, Shen G, Hillhouse G C, Meng J and Trzcinska A 2007 Phys. Rev. C 76 034305 | Neutron skin deduced from antiprotonic atom data
[45] | Tarbert C M et al. 2014 Phys. Rev. Lett. 112 242502 | Neutron Skin of from Coherent Pion Photoproduction
[46] | Abrahamyan S et al. 2012 Phys. Rev. Lett. 108 112502 | Measurement of the Neutron Radius of through Parity Violation in Electron Scattering
[47] | Xu J, Xie W J and Li B A 2020 Phys. Rev. C 102 044316 | Bayesian inference of nuclear symmetry energy from measured and imagined neutron skin thickness in , and
[48] | Xu J, Zhou J, Zhang Z, Xie W J and Li B A 2020 Phys. Lett. B 810 135820 | Constraining isovector nuclear interactions with giant resonances within a Bayesian approach