[1] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | Colloquium : Topological insulators
[2] | Bansi A L, Lin H and Das T 2016 Rev. Mod. Phys. 88 021004 | Colloquium : Topological band theory
[3] | Sheng L, Shao L B, Hou Q Z and Xue Z Y 2018 J. Phys.: Condens. Matter 30 124001 | Quantum anomalous Hall phase in a one-dimensional optical lattice
[4] | Li L H, Xu Z H and Chen S 2014 Phys. Rev. B 89 085111 | Topological phases of generalized Su-Schrieffer-Heeger models
[5] | Read N and Green D 2000 Phys. Rev. B 61 10267 | Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect
[6] | Kitaev A Y 2001 Phys. -Usp. 44 131 | Unpaired Majorana fermions in quantum wires
[7] | Alicea J 2012 Rep. Prog. Phys. 75 076501 | New directions in the pursuit of Majorana fermions in solid state systems
[8] | Ruostekoski J, Dunne G V and Javanainen J 2002 Phys. Rev. Lett. 88 180401 | Particle Number Fractionalization of an Atomic Fermi-Dirac Gas in an Optical Lattice
[9] | Thouless D J 1983 Phys. Rev. B 27 6083 | Quantization of particle transport
[10] | Rice M J and Mele E J 1982 Phys. Rev. Lett. 49 1455 | Elementary Excitations of a Linearly Conjugated Diatomic Polymer
[11] | Yao S Y and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[12] | Zhu S L, Wang B and Duan L M 2007 Phys. Rev. Lett. 98 260402 | Simulation and Detection of Dirac Fermions with Cold Atoms in an Optical Lattice
[13] | Zhang D W, Wang Z D and Zhu S L 2012 Front. Phys. 7 31 | Relativistic quantum effects of Dirac particles simulated by ultracold atoms
[14] | Tarruell L, Greif D, Uehlinger T, Jotzu G and Esslinger T 2012 Nature 483 302 | Creating, moving and merging Dirac points with a Fermi gas in a tunable honeycomb lattice
[15] | Lewenstein M, Sanpera A, Ahufnger V, Damski B, Sen(De) A and Sen U 2007 Adv. Phys. 56 243 | Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond
[16] | Jiang J H 2012 Phys. Rev. A 85 033640 | Tunable topological Weyl semimetal from simple-cubic lattices with staggered fluxes
[17] | He W Y, Zhang S and Law K T 2016 Phys. Rev. A 94 013606 | Realization and detection of Weyl semimetals and the chiral anomaly in cold atomic systems
[18] | Zhu S L, Fu H, Wu C J, Zhang S C and Duan L M 2006 Phys. Rev. Lett. 97 240401 | Spin Hall Effects for Cold Atoms in a Light-Induced Gauge Potential
[19] | Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H and Zhang J 2012 Phys. Rev. Lett. 109 095301 | Spin-Orbit Coupled Degenerate Fermi Gases
[20] | Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S and Zwierlein M W 2012 Phys. Rev. Lett. 109 095302 | Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas
[21] | Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J and Pan J W 2016 Science 354 83 | Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates
[22] | Shao L B, Zhu S L, Sheng L, Xing D Y and Wang Z D 2008 Phys. Rev. Lett. 101 246810 | Realizing and Detecting the Quantum Hall Effect without Landau Levels by Using Ultracold Atoms
[23] | Deng D L, Wang S T and Duan L M 2014 Phys. Rev. A 90 041601 | Direct probe of topological order for cold atoms
[24] | Price H M and Cooper N R 2012 Phys. Rev. A 85 033620 | Mapping the Berry curvature from semiclassical dynamics in optical lattices
[25] | Alba E, Fernandez-Gonzalvo X, Mur-Petit J, Pachos J K and Garcia-Ripoll J J 2011 Phys. Rev. Lett. 107 235301 | Seeing Topological Order in Time-of-Flight Measurements
[26] | Liu X J, Liu Z X and Cheng M 2013 Phys. Rev. Lett. 110 076401 | Manipulating Topological Edge Spins in a One-Dimensional Optical Lattice
[27] | Zhu S L, Shao L B, Wang Z D and Duan L M 2011 Phys. Rev. Lett. 106 100404 | Probing Non-Abelian Statistics of Majorana Fermions in Ultracold Atomic Superfluid
[28] | Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N R, Bloch I and Goldman N 2015 Nat. Phys. 11 162 | Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
[29] | Abanin D A, Kitagawa T, Bloch I and Demler E 2013 Phys. Rev. Lett. 110 165304 | Interferometric Approach to Measuring Band Topology in 2D Optical Lattices
[30] | Atala M, Aidelsburger M, Barreiro J T, Abanin D, Kitagawa T, Demler E and Bloch I 2013 Nat. Phys. 9 795 | Direct measurement of the Zak phase in topological Bloch bands
[31] | Zhu Y Q, Zhang D W, Yan H, Xing D Y and Zhu S L 2017 Phys. Rev. A 96 033634 | Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
[32] | Zhang D W, Zhao Y X, Liu R B, Xue Z Y, Zhu S L and Wang Z D 2016 Phys. Rev. A 93 043617 | Quantum simulation of exotic -invariant topological nodal loop bands with ultracold atoms in an optical lattice
[33] | Lang L J, Cai X and Chen S 2012 Phys. Rev. Lett. 108 220401 | Edge States and Topological Phases in One-Dimensional Optical Superlattices
[34] | Zhu S L, Wang Z D, Chan Y H and Duan L M 2013 Phys. Rev. Lett. 110 075303 | Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice
[35] | Wang L, Soluyanov A A and Troyer M 2013 Phys. Rev. Lett. 110 166802 | Proposal for Direct Measurement of Topological Invariants in Optical Lattices
[36] | Ozawa T, Price H M, Goldman N, Zilberberg O and Carusotto I 2016 Phys. Rev. A 93 043827 | Synthetic dimensions in integrated photonics: From optical isolation to four-dimensional quantum Hall physics
[37] | Price H M, Zilberberg O, Ozawa T, Carusotto I and Goldman N 2015 Phys. Rev. Lett. 115 195303 | Four-Dimensional Quantum Hall Effect with Ultracold Atoms
[38] | Saito T Y and Furukawa S 2017 Phys. Rev. A 95 043613 | Devil's staircases in synthetic dimensions and gauge fields
[39] | Ghosh S K, Greschner S, Yadav U K, Mishra T, Rizzi M and Shenoy V B 2017 Phys. Rev. A 95 063612 | Unconventional phases of attractive Fermi gases in synthetic Hall ribbons
[40] | Mei F, Zhu S L, Zhang Z M, Oh C H and Goldman N 2012 Phys. Rev. A 85 013638 | Simulating topological insulators with cold atoms in a one-dimensional optical lattice
[41] | Liu X J, Law K T, Ng T K and Lee P A 2013 Phys. Rev. Lett. 111 120402 | Detecting Topological Phases in Cold Atoms
[42] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D and Esslinger T 2014 Nature 515 237 | Experimental realization of the topological Haldane model with ultracold fermions
[43] | Yang D C, Cheng M T, Ma X S, Xu J P, Zhu C J and Huang X H 2018 Phys. Rev. A 98 063809 | Phase-modulated single-photon router
[44] | Pleinert M O, von Zanthier J and Agarwal G S 2018 Phys. Rev. A 97 023831 | Phase control of the quantum statistics of collective emission
[45] | Wang C, Liu Y L, Wu R and Liu Y X 2017 Phys. Rev. A 96 013818 | Phase-modulated photon antibunching in a two-level system coupled to two cavities
[46] | Yuan L, Xu S and Fan S 2015 Opt. Lett. 40 5140 | Achieving nonreciprocal unidirectional single-photon quantum transport using the photonic Aharonov–Bohm effect
[47] | Tena D, Colin J K, Ling L, Wolfgang K M S and Hrvoje B 2015 Phys. Rev. Lett. 114 225301 | Weyl Points in Three-Dimensional Optical Lattices: Synthetic Magnetic Monopoles in Momentum Space
[48] | Luo X W, Zhou X X, Xu J S, Li C F, Guo G C, Zhang C W and Zhou Z W 2017 Nat. Commun. 8 16097 | Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light
[49] | Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674 | Chern Numbers in Discretized Brillouin Zone: Efficient Method of Computing (Spin) Hall Conductances
[50] | Lu H I, Schemmer M, Aycock L M, Genkina D, Sugawa S and Spielman I B 2016 Phys. Rev. Lett. 116 200402 | Geometrical Pumping with a Bose-Einstein Condensate
[51] | Mei F, You J B, Zhang D W, Yang X C, Fazio R, Zhu S L and Kwek L C 2014 Phys. Rev. A 90 063638 | Topological insulator and particle pumping in a one-dimensional shaken optical lattice
[52] | Zhang D W, Mei F, Xue Z Y, Zhu S L and Wang Z D 2015 Phys. Rev. A 92 013612 | Simulation and measurement of the fractional particle number in one-dimensional optical lattices