TTC method | OTC method | |
---|---|---|
Transmission efficiency | Equal $\big(\frac{\eta_{_{\rm A}}(V_{\rm B}-1)}{\eta_{_{\rm B}}(V_{\rm B}+1)}\big)$ | |
Equivalent excess noise | Equal $\big(\varepsilon^{\prime\prime}=\varepsilon_{_{\rm A}}+ \frac{1} {\eta_{_{\rm A}}}\big[\eta_{_{\rm B}}(\varepsilon_{_{\rm B}}-2)+2\frac{1+v_{\rm el}}{\eta_{\rm d}}\big]\big)$ | |
Displacement gain | $\sqrt{\frac{2}{\eta_{_{\rm B}} \eta_{\rm d}}} \sqrt{\frac{V_{\rm B}-1}{V_{\rm B}+1}}$ | $\sqrt{\frac{2}{\eta_{_{\rm B}}\eta_{\rm d}\eta_{e}}} \sqrt{\frac{V_{\rm B}-1}{V_{\rm B}+1}}$ |
Characteristic and comparison | 1. Unable to monitor shot-noise directly 2. Existing big fluctuation in statistics | 1. Monitor shot-noise in real-time 2. Reducing statistical volatility 3. Performing as well as the previous method$^*$. |
$^*$NB: The outputs with the two methods are not equal in a one-way CV-QKD system, which differs from the CV-MDI QKD system discussed in this Letter. |
[1] | Pirandola S, Andersen U L, Banchi L, Berta M, Bunandar D, Colbeck R, Englund D, Gehring T, Lupo C, Ottaviani C, Pereira J, Razavi M, Shaari J S, Tomamichel M, Usenko V C, Vallone G, Villoresi P and Wallden P 2020 Adv. Opt. Photon. 12 1012 | Advances in quantum cryptography
[2] | Xu F, Ma X, Zhang Q, Lo H K and Pan J 2020 Rev. Mod. Phys. 92 025002 | Secure quantum key distribution with realistic devices
[3] | Weedbrook C, Pirandola S, Garcia-Patron R, Cerf N J, Ralph T C, Shapiro J H and Lloyd S 2012 Rev. Mod. Phys. 84 621 | Gaussian quantum information
[4] | Diamanti E and Leverrier A 2015 Entropy 17 6072 | Distributing Secret Keys with Quantum Continuous Variables: Principle, Security and Implementations
[5] | Li Y, Wang X, Bai Z, Liu W, Yang S and Peng K 2017 Chin. Phys. B 26 040303 | Continuous variable quantum key distribution
[6] | Zhang G, Haw J Y, Cai H, Xu F, Assad S M, Fitzsimons J F, Zhou X, Zhang Y, Yu S, Wu J, Ser W, Kwek L C and Liu A Q 2019 Nat. Photon. 13 839 | An integrated silicon photonic chip platform for continuous-variable quantum key distribution
[7] | Grosshans F and Grangier P 2002 Phys. Rev. Lett. 88 057902 | Continuous Variable Quantum Cryptography Using Coherent States
[8] | Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238 | Quantum key distribution using gaussian-modulated coherent states
[9] | Renner R and Cirac J I 2009 Phys. Rev. Lett. 102 110504 | de Finetti Representation Theorem for Infinite-Dimensional Quantum Systems and Applications to Quantum Cryptography
[10] | Leverrier A and Grangier P 2015 Phys. Rev. Lett. 114 070501 | Composable Security Proof for Continuous-Variable Quantum Key Distribution with Coherent States
[11] | Leverrier A 2017 Phys. Rev. Lett. 118 200501 | Security of Continuous-Variable Quantum Key Distribution via a Gaussian de Finetti Reduction
[12] | Li Z, Zhang Y and Guo H 2018 arXiv:1805.04249 [quant-ph] | User-defined quantum key distribution
[13] | Ghorai S, Grangier P, Diamanti E and Leverrier A 2019 Phys. Rev. X 9 021059 | Asymptotic Security of Continuous-Variable Quantum Key Distribution with a Discrete Modulation
[14] | Lin J, Upadhyaya T, Lutkenhaus N 2019 Phys. Rev. X 9 041064 | Asymptotic Security Analysis of Discrete-Modulated Continuous-Variable Quantum Key Distribution
[15] | Ottaviani C, Woolley M J, Erementchouk M, Federici J F, Mazumder P, Pirandola S and Weedbrook C 2020 IEEE J. Sel. Areas Commun. 38 483 | Terahertz Quantum Cryptography
[16] | Jouguet P, Kunz-Jacques S, Leverrier A, Grangier P and Diamanti E 2013 Nat. Photon. 7 378 | Experimental demonstration of long-distance continuous-variable quantum key distribution
[17] | Zhang Y, Li Z, Chen Z, Weedbrook C, Zhao Y, Wang X, Huang Y, Xu C, Zhang X, Wang Z, Li M, Zhang X, Zheng Z, Chu B, Gao X, Meng N, Cai W, Wang Z, Wang G, Yu S and Guo H 2019 Quantum Sci. Technol. 4 065006 | Quantum Science and Technology
[18] | Aguado A, Lopez V, Lopez D, Peev M, Poppe A, Pastor A, Folgueira J and Martin V 2019 IEEE Commun. Mag. 57 20 | The Engineering of Software-Defined Quantum Key Distribution Networks
[19] | Zhang Y, Chen Z, Pirandola S, Wang X, Zhou C, Chu B, Zhao Y, Xu B, Yu S and Guo H 2020 Phys. Rev. Lett. 125 010502 | Long-Distance Continuous-Variable Quantum Key Distribution over 202.81 km of Fiber
[20] | Eriksson T A, Luis R S, Puttnam B J, Rademacher G, Fujiwara M, Awaji Y, Furukawa H, Wada N, Takeoka M and Sasaki M 2020 J. Lightwave Technol. 38 2214 | Wavelength Division Multiplexing of 194 Continuous Variable Quantum Key Distribution Channels
[21] | Qi B, Gunther H, Evans P G, Williams B P, Camacho R M and Peters N A 2020 Phys. Rev. Appl. 13 054065 | Experimental Passive-State Preparation for Continuous-Variable Quantum Communications
[22] | Wang H, Pi I, Huang W, Li Y, Shao Y, Yang J, Liu J, Zhang C, Zhang Y and Xu B 2020 Opt. Express 28 32882 | High-speed Gaussian-modulated continuous-variable quantum key distribution with a local local oscillator based on pilot-tone-assisted phase compensation
[23] | Su X, Wang W, Wang Y, Jia X, Xie C and Peng K 2009 Europhys. Lett. 87 20005 | Continuous variable quantum key distribution based on optical entangled states without signal modulation
[24] | Su X, Wang M, Yan Z, Jia X, Xie C and Peng K 2020 Sci. Chin. Inf. Sci. 63 180503 | Quantum network based on non-classical light
[25] | Ma X, Sun S, Jiang M and Liang L 2013 Phys. Rev. A 87 52309 | Wavelength attack on practical continuous-variable quantum-key-distribution system with a heterodyne protocol
[26] | Jouguet P, Kunz-Jacques S and Diamanti E 2013 Phys. Rev. A 87 062313 | Preventing calibration attacks on the local oscillator in continuous-variable quantum key distribution
[27] | Zhao Y, Zhang Y, Huang Y, Xu B, Yu S and Guo H 2018 J. Phys. B 52 015501 | Polarization attack on continuous-variable quantum key distribution
[28] | Weedbrook C 2013 Phys. Rev. A 87 022308 | Continuous-variable quantum key distribution with entanglement in the middle
[29] | Zhang Y, Chen Z, Weedbrook C, Yu S and Guo H 2020 Sci. Rep. 10 6673 | Continuous-variable source-device-independent quantum key distribution against general attacks
[30] | Pirandola S, Ottaviani C, Spedalieri G, Weedbrook C, Braunstein S L, Lloyd S, Gehring T, Jacobsen C S and Andersen U L 2015 Nat. Photon. 9 397 | High-rate measurement-device-independent quantum cryptography
[31] | Li Z, Zhang Y, Xu F, Peng X and Guo H 2014 Phys. Rev. A 89 052301 | Continuous-variable measurement-device-independent quantum key distribution
[32] | Wilkinson K N, Papanastasiou P, Ottaviani C, Gehring T and Pirandola S 2020 Phys. Rev. Res. 2 033424 | Long-distance continuous-variable measurement-device-independent quantum key distribution with postselection
[33] | Zhao Y, Zhang Y, Xu B, Yu S and Guo H 2018 Phys. Rev. A 97 042328 | Continuous-variable measurement-device-independent quantum key distribution with virtual photon subtraction
[34] | Ma H, Huang P, Bai D, Wang S, Bao W and Zeng G 2018 Phys. Rev. A 97 042329 | Continuous-variable measurement-device-independent quantum key distribution with photon subtraction
[35] | Huang L, Zhang Y, Chen Z and Yu S 2019 Entropy 21 1100 | Unidimensional Continuous-Variable Quantum Key Distribution with Untrusted Detection under Realistic Conditions
[36] | Bai D, Huang P, Zhu Y, Ma H, Xiao T, Wang T and Zeng G 2020 Quantum Inf. Process. 19 53 | Unidimensional continuous-variable measurement-device-independent quantum key distribution
[37] | Zhang Y, Huang Y, Chen Z, Li Z, Yu S and Guo H 2020 Phys. Rev. Appl. 13 024058 | One-Time Shot-Noise Unit Calibration Method for Continuous-Variable Quantum Key Distribution
[38] | Lodewyck J, Bloch M, Garcia-Patron R, Fossier S, Karpov E, Diamanti E, Debuisschert T, Cerf N J, Tualle-Brouri R, McLaughlin S W and Grangier P 2007 Phys. Rev. A 76 042305 | Quantum key distribution over with an all-fiber continuous-variable system
[39] | Usenko V C and Filip R 2016 Entropy 18 20 | Trusted Noise in Continuous-Variable Quantum Key Distribution: A Threat and a Defense
[40] | Zhou C, Wang X Y, Zhang Y C, Zhang Z G, Yu S and Guo H 2019 Phys. Rev. Appl. 12 054013 | Continuous-Variable Quantum Key Distribution with Rateless Reconciliation Protocol