Gate Tunable Supercurrent in Josephson Junctions Based on Bi2Te3 Topological Insulator Thin Films

Funds: Supported by the Basic Science Center Project of the National Natural Science Foundation of China (Grant No. 51788104), and the National Key R&D Program of China (Grant No. 2017YFA0302900).
  • Received Date: November 23, 2020
  • Published Date: February 28, 2021
  • We report transport measurements on Josephson junctions consisting of Bi2Te3 topological insulator (TI) thin films contacted by superconducting Nb electrodes. For a device with junction length L=134 nm, the critical supercurrent Ic can be modulated by an electrical gate which tunes the carrier type and density of the TI film. Ic can reach a minimum when the TI is near the charge neutrality regime with the Fermi energy lying close to the Dirac point of the surface state. In the p-type regime the Josephson current can be well described by a short ballistic junction model. In the n-type regime the junction is ballistic at 0.7 K <T<3.8 K while for T<0.7 K the diffusive bulk modes emerge and contribute a larger Ic than the ballistic model. We attribute the lack of diffusive bulk modes in the p-type regime to the formation of p–n junctions. Our work provides new clues for search of Majorana zero mode in TI-based superconducting devices.
  • Article Text

  • [1]
    Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 doi: 10.1103/PhysRevLett.100.096407

    CrossRef Google Scholar

    [2]
    Akhmerov A R, Nilsson J and Beenakker C W J 2009 Phys. Rev. Lett. 102 216404 doi: 10.1103/PhysRevLett.102.216404

    CrossRef Google Scholar

    [3]
    Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 doi: 10.1103/RevModPhys.82.3045

    CrossRef Google Scholar

    [4]
    Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 doi: 10.1103/RevModPhys.83.1057

    CrossRef Google Scholar

    [5]
    Nakayama K, Eto K, Tanaka Y, Sato T, Souma S, Takahashi T, Segawa K and Ando Y 2012 Phys. Rev. Lett. 109 236804 doi: 10.1103/PhysRevLett.109.236804

    CrossRef Google Scholar

    [6]
    Alicea J 2012 Rep. Prog. Phys. 75 076501 doi: 10.1088/0034-4885/75/7/076501

    CrossRef Google Scholar

    [7]
    Tkachov G and Hankiewicz E M 2013 Phys. Rev. B 88 075401 doi: 10.1103/PhysRevB.88.075401

    CrossRef Google Scholar

    [8]
    Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401 doi: 10.1103/PhysRevB.81.121401

    CrossRef Google Scholar

    [9]
    Dolcini F, Houzet M and Meyer J S 2015 Phys. Rev. B 92 035428 doi: 10.1103/PhysRevB.92.035428

    CrossRef Google Scholar

    [10]
    Fu L and Kane C L 2009 Phys. Rev. B 79 161408 doi: 10.1103/PhysRevB.79.161408

    CrossRef Google Scholar

    [11]
    Yang F, Qu F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Yang C, Fu L and Lu L 2012 Phys. Rev. B 86 134504 doi: 10.1103/PhysRevB.86.134504

    CrossRef Google Scholar

    [12]
    Williams J R, Bestwick A J, Gallagher P, Hong S S, Cui Y, Bleich A S, Analytis J G, Fisher I R and Goldhaber-Gordon D 2012 Phys. Rev. Lett. 109 056803 doi: 10.1103/PhysRevLett.109.056803

    CrossRef Google Scholar

    [13]
    Qu F M, Yang F, Shen J, Ding Y, Chen J, Ji Z, Liu G, Fan J, Jing X, Yang C and Lu L 2012 Sci. Rep. 2 339 doi: 10.1038/srep00339

    CrossRef Google Scholar

    [14]
    Veldhorst M, Snelder M, Hoek M, Gang T, Guduru V K, Wang X L, Zeitler U, van der Wiel W G, Golubov A A, Hilgenkamp H and Brinkman A 2012 Nat. Mater. 11 417 doi: 10.1038/nmat3255

    CrossRef Google Scholar

    [15]
    Cho S, Dellabetta B, Yang A, Schneeloch J, Xu Z, Valla T, Gu G, Gilbert M J and Mason N 2013 Nat. Commun. 4 1689 doi: 10.1038/ncomms2701

    CrossRef Google Scholar

    [16]
    Jauregui L A, Kayyalha M, Kazakov A, Miotkowski I, Rokhinson L P and Chen Y P 2018 Appl. Phys. Lett. 112 93105 doi: 10.1063/1.5008746

    CrossRef Google Scholar

    [17]
    Oostinga J B, Maier L, Schüffelgen P, Knott D, Ames C, Brüne C, Tkachov G, Buhmann H and Molenkamp L W 2013 Phys. Rev. X 3 021007 doi: 10.1103/PhysRevX.3.021007

    CrossRef Google Scholar

    [18]
    Sochnikov I, Bestwick A J, Williams J R, Lippman T M, Fisher I R, Goldhaber-Gordon D, Kirtley J R and Moler K A 2013 Nano Lett. 13 3086 doi: 10.1021/nl400997k

    CrossRef Google Scholar

    [19]
    Wiedenmann J, Bocquillon E, Deacon R S, Hartinger S, Herrmann O, Klapwijk T M, Maier L, Ames C, Brüne C, Gould C, Oiwa A, Ishibashi K, Tarucha S, Buhmann H and Molenkamp L W 2016 Nat. Commun. 7 10303 doi: 10.1038/ncomms10303

    CrossRef Google Scholar

    [20]
    Stehno M P, Ngabonziza P, Myoren H and Brinkman A 2020 Adv. Mater. 32 1908351 doi: 10.1002/adma.201908351

    CrossRef Google Scholar

    [21]
    Takeshige Y, Matsuo S, Deacon R S, Ueda K, Sato Y, Zhao Y F, Zhou L, Chang C Z, Ishibashi K and Tarucha S 2020 Phys. Rev. B 101 115410 doi: 10.1103/PhysRevB.101.115410

    CrossRef Google Scholar

    [22]
    Schüffelgen P, Rosenbach D, Li C, Schmitt T W, Schleenvoigt M, Jalil A R, Schmitt S, Kölzer J, Wang M, Bennemann B, Parlak U, Kibkalo L, Trellenkamp S, Grap T, Meertens D, Luysberg M, Mussler G, Berenschot E, Tas N, Golubov A A, Brinkman A, Schäpers T and Grützmacher D 2019 Nat. Nanotechnol. 14 825 doi: 10.1038/s41565-019-0506-y

    CrossRef Google Scholar

    [23]
    Li Y Y, Wang G, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C and Xue Q K 2010 Adv. Mater. 22 4002 doi: 10.1002/adma.201000368

    CrossRef Google Scholar

    [24]
    Chen J, Qin H J, Yang F, Liu J, Guan T, Qu F M, Zhang G H, Shi J R, Xie X C, Yang C L, Wu K H, Li Y Q and Lu L 2010 Phys. Rev. Lett. 105 176602 doi: 10.1103/PhysRevLett.105.176602

    CrossRef Google Scholar

    [25]
    Yoshimi R, Tsukazaki A, Kozuka Y, Falson J, Takahashi K S, Checkelsky J G, Nagaosa N, Kawasaki M, Tokura Y 2015 Nat. Commun. 6 6627 doi: 10.1038/ncomms7627

    CrossRef Google Scholar

    [26]
    Tinkham M 1996 Introduction to Superconductivity New York: McGraw-Hill

    Google Scholar

    [27]
    Shalom M B, Zhu M J, Fal'ko V I, Mishchenko A, Kretinin A V, Novoselov K S, Woods C R, Watanabe K, Taniguchi T, Geim A K and Prance J R 2016 Nat. Phys. 12 318 doi: 10.1038/nphys3592

    CrossRef Google Scholar

    [28]
    Calado V E, Goswami S, Nanda G, Diez M, Akhmerov A R, Watanabe K, Taniguchi T, Klapwijk T M and Vandersypen L M K 2015 Nat. Nanotechnol. 10 761 doi: 10.1038/nnano.2015.156

    CrossRef Google Scholar

    [29]
    Olund C T, Zhao E 2012 Phys. Rev. B 86 214515 doi: 10.1103/PhysRevB.86.214515

    CrossRef Google Scholar

    [30]
    Golubov A A, Kupriyanov M Y and Il'ichev E 2004 Rev. Mod. Phys. 76 411 doi: 10.1103/RevModPhys.76.411

    CrossRef Google Scholar

    [31]
    Dubos P, Courtois H, Pannetier B, Wilhelm F K, Zaikin A D and Schön G 2001 Phys. Rev. B 63 64502 doi: 10.1103/PhysRevB.63.064502

    CrossRef Google Scholar

    [32]
    Yu K M and Lukichev V F 1988 Sov. Phys.-JETP 67 1163

    Google Scholar

  • Related Articles

    [1]SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan. Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium [J]. Chin. Phys. Lett., 2012, 29(7): 074213. doi: 10.1088/0256-307X/29/7/074213
    [2]WANG Xiao-Long, CHENG Bing, WU Bin, WANG Zhao-Ying, LIN Qiang. A Simplified Cold Atom Source for 3-D MOT Loading [J]. Chin. Phys. Lett., 2011, 28(5): 053701. doi: 10.1088/0256-307X/28/5/053701
    [3]ZHOU Lin, XIONG Zong-Yuan, YANG Wei, TANG Biao, PENG Wen-Cui, WANG Yi-Bo, XU Peng, WANG Jin, ZHAN Ming-Sheng. Measurement of Local Gravity via a Cold Atom Interferometer [J]. Chin. Phys. Lett., 2011, 28(1): 013701. doi: 10.1088/0256-307X/28/1/013701
    [4]ZHOU Shu-Yu, XIA Tian, XU Zhen, WANG Yu-Zhu. Experimental Properties of Optical Phase Conjugation in Cold Atoms in a Magneto-Optical Trap [J]. Chin. Phys. Lett., 2010, 27(1): 014211. doi: 10.1088/0256-307X/27/1/014211
    [5]ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency [J]. Chin. Phys. Lett., 2009, 26(9): 090601. doi: 10.1088/0256-307X/26/9/090601
    [6]LI Ke, WANG Xiao-Rui, HE Ling-Xiang, ZHAN Ming-Sheng, LU Bao-Long. Enhancement of Transfer Efficiency of Cold Atoms Using an Optical Guiding Laser Beam [J]. Chin. Phys. Lett., 2007, 24(9): 2562-2565.
    [7]XIANG Shao-Hua, SONG Ke-Hui. Preparation and Decoherence of Two-Atom Entangled States in a Dissipative Cavity [J]. Chin. Phys. Lett., 2006, 23(4): 768-771.
    [8]BIAN Feng-Gang, WEI Rong, JIANG Hai-Feng, WANG Yu-Zhu. A Movable-Cavity Cold Atom Space Clock [J]. Chin. Phys. Lett., 2005, 22(7): 1645-1648.
    [9]WEI Rong, QIAN Yong, ZHANG Yu, WANG Yu-Zhu. Proposal of a Novel Compact Cold Atomic Fountain Clock [J]. Chin. Phys. Lett., 2004, 21(1): 57-60.
    [10]HE Xiao-Ling, DU Si-De, CHEN Hao, LU Jing. Coherent Control of Transmission Probability of a Cold Atom Through Microcavity Potentials [J]. Chin. Phys. Lett., 2003, 20(4): 456-458.

Catalog

    Article views (686) PDF downloads (515) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return