Superconductivity and Charge Density Wave in Iodine-Doped CuIr2Te4

Funds: Supported by the National Natural Science Foundation of China (Grants No. 11922415), the Guangdong Basic and Applied Basic Research Foundation (Grants No. 2019A1515011718), the Fundamental Research Funds for the Central Universities (Grants No. 19lgzd03), the Key R&D Program of Guangdong Province, China (Grants No. 2019B110209003), and the Pearl River Scholarship Program of Guangdong Province Universities and Colleges (Grants No. 20191001). H.C. Wang was supported by the National Natural Science Foundation of China (Grant No. 12004441), the Hundreds of Talents Program of Sun Yat-Sen University and the Fundamental Research Funds for the Central Universities (Grants No. 20lgpy165). D.X. Yao was supported by the National Natural Science Foundation of China (Grant No. 11974432), NKRDPC-2017YFA0206203, and NKRDPC-2018YFA0306001. M. Wang was supported by the National Nature Science Foundation of China (11904414), the Natural Science Foundation of Guangdong (2018A030313055), and National Key Research and Development Program of China (Grants No. 2019YFA0705700).
  • Received Date: November 24, 2020
  • Published Date: February 28, 2021
  • We report a systematic investigation on the evolution of the structural and physical properties, including the charge density wave (CDW) and superconductivity of the polycrystalline CuIr2Te4xIx for 0.0x1.0. X-ray diffraction results indicate that both of a and c lattice parameters increase linearly when 0.0x1.0. The resistivity measurements indicate that the CDW is destabilized with slight x but reappears at x0.9 with very high TCDW. Meanwhile, the superconducting transition temperature Tc enhances as x increases and reaches a maximum value of around 2.95 K for the optimal composition CuIr2Te1.9I0.1 followed by a slight decrease with higher iodine doping content. The specific heat jump (ΔC/γTc) for the optimal composition CuIr2Te3.9I0.1 is approximately 1.46, which is close to the Bardeen–Cooper–Schrieffer value of 1.43, indicating that it is a bulk superconductor. The results of thermodynamic heat capacity measurements under different magnetic fields [Cp(T,H)], magnetization M(T,H) and magneto-transport ρ(T,H) measurements further suggest that CuIr2Te4xIx bulks are type-II superconductors. Finally, an electronic phase diagram for this CuIr2Te4xIx system has been constructed. The present study provides a suitable material platform for further investigation of the interplay of the CDW and superconductivity.
  • Article Text

  • [1]
    Lin Z, Zhao Y, Zhou C, Zhong R, Wang X, Tsang Y H and Chai Y 2016 Sci. Rep. 5 18596 doi: 10.1038/srep18596

    CrossRef Google Scholar

    [2]
    Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147 doi: 10.1038/nnano.2010.279

    CrossRef Google Scholar

    [3]
    Su S H, Hsu W T, Hsu C L, Chen C H, Chiu M H, Lin Y C, Chang W H, Suenaga K, He J H and Li L J 2014 Front. Energy Res. 2 27 doi: 10.3389/fenrg.2014.00027

    CrossRef Google Scholar

    [4]
    Jariwala D, Sangwan V K, Lauhon L J, Marks T J, Hersam M C 2014 ACS Nano 8 1102 doi: 10.1021/nn500064s

    CrossRef Google Scholar

    [5]
    Wilson J A and Yoffe A D 1969 Adv. Phys. 18 193 doi: 10.1080/00018736900101307

    CrossRef Google Scholar

    [6]
    Wilson J A, Di Salvo F J and Mahajan S 1975 Adv. Phys. 24 117 doi: 10.1080/00018737500101391

    CrossRef Google Scholar

    [7]
    Gabovich A M, Voitenko A I and Ausloos M 2002 Phys. Rep. 367 583 doi: 10.1016/S0370-15730200029-7

    CrossRef Google Scholar

    [8]
    Di Salvo F J, Schwall R, Geballe T H, Gamble F R and Osiecki J H 1971 Phys. Rev. Lett. 27 310 doi: 10.1103/PhysRevLett.27.310

    CrossRef Google Scholar

    [9]
    Fang L, Wang Y, Zou P Y, Tang L, Xu Z, Chen H, Dong C, Shan L and Wen H H 2005 Phys. Rev. B 72 14534 doi: 10.1103/PhysRevB.72.014534

    CrossRef Google Scholar

    [10]
    Wagner K E, Morosan E, Hor Y S, Tao J, Zhu Y, Sanders T, McQueen T M, Zandbergen H W, Williams A J, West D V and Cava R J 2008 Phys. Rev. B 78 104520 doi: 10.1103/PhysRevB.78.104520

    CrossRef Google Scholar

    [11]
    Luo H X, Klimczuk T, Müchler L, Schoop L, Hirai D, Fuccillo M K, Felser C and Cava R J 2013 Phys. Rev. B 87 214510 doi: 10.1103/PhysRevB.87.214510

    CrossRef Google Scholar

    [12]
    Luo H X, Xie W, Tao J, Pletikosic I, Valla T, Sahasrabudhe G S, Osterhoudt G, Sutton E, Burch K S, Seibel E M, Krizan J W, Zhu Y and Cava R J 2016 Chem. Mater. 28 1927 doi: 10.1021/acs.chemmater.6b00288

    CrossRef Google Scholar

    [13]
    Pan X C, Chen X, Liu H, Feng Y, Wei Z, Zhou Y, Chi Z, Pi L, Fei Y, Song F, Wan X, Yang Z, Wang B, Wang G and Zhang Y 2015 Nat. Commun. 6 7805 doi: 10.1038/ncomms8805

    CrossRef Google Scholar

    [14]
    Berthier C, Molinie P and Jerome D 1976 Solid State Commun. 18 1393 doi: 10.1016/0038-10987690986-8

    CrossRef Google Scholar

    [15]
    Nunezregueiro M, Mignot J M, Jaime M, Castello D and Monceau P 1993 Synth. Met. 56 2653 doi: 10.1016/0379-67799390013-M

    CrossRef Google Scholar

    [16]
    Xi X B H, Forró L, Shan J and Mak K F 2016 Phys. Rev. Lett. 117 106801 doi: 10.1103/PhysRevLett.117.106801

    CrossRef Google Scholar

    [17]
    Fu Y, Liu E, Yuan H, Tang P, Lian B, Xu G, Zeng J, Chen Z, Wang Y, Zhou W, Xu K, Gao A, Pan C, Wang M, Wang B, Zhang S C, Cui Y, Hwang H Y and Miao F 2017 npj Quantum Mater. 2 52 doi: 10.1038/s41535-017-0056-1

    CrossRef Google Scholar

    [18]
    Lu J, Zheliuk O, Chen Q, Leermakers I, Hussey N E, Zeitler U and Ye J 2018 Proc. Natl. Acad. Sci. USA 115 3551 doi: 10.1073/pnas.1716781115

    CrossRef Google Scholar

    [19]
    Sipos B, Kusmartseva A F, Akrap A, Berger H, Forro L and Tutis E 2008 Nat. Mater. 7 960 doi: 10.1038/nmat2318

    CrossRef Google Scholar

    [20]
    Sun J P, Matsuura K, Ye G Z, Mizukami Y, Shimozawa M, Matsubayashi K, Yamashita M, Watashige T, Kasahara S, Matsuda Y, Yan J Q, Sales B C, Uwatoko Y, Cheng J G and Shibauchi T 2016 Nat. Commun. 7 12146 doi: 10.1038/ncomms12146

    CrossRef Google Scholar

    [21]
    Takabayashi Y and Prassides K 2016 Philos. Trans. R. Soc. A 374 20150320 doi: 10.1098/rsta.2015.0320

    CrossRef Google Scholar

    [22]
    da S N E H, Aynajian P, Frano A, Comin R, Schierle E, Weschke E, Gyenis A, Wen J, Schneeloch J, Xu Z, Ono S, Gu G, Le T M and Yazdani A 2014 Science 343 393 doi: 10.1126/science.1243479

    CrossRef Google Scholar

    [23]
    Talantsev I K, Ohmura T, M, Crump W P, Strickland N M, Wimbush S C and Ikuta H 2019 Sci. Rep. 9 14245 doi: 10.1038/s41598-019-50687-y

    CrossRef Google Scholar

    [24]
    Kamitani M, Bahramy M S, Arita R, Seki S, Arima T, Tokura Y and Ishiwata S 2013 Phys. Rev. B 87 180501R doi: 10.1103/PhysRevB.87.180501

    CrossRef Google Scholar

    [25]
    Yang J J, Choi Y J, Oh Y S, Hogan A, Horibe Y, Kim K, Min B I and Cheong S W 2012 Phys. Rev. Lett. 108 116402 doi: 10.1103/PhysRevLett.108.116402

    CrossRef Google Scholar

    [26]
    Jin K and Liu K 2015 Sci. Bull. 60 822 doi: 10.1007/s11434-015-0775-2

    CrossRef Google Scholar

    [27]
    Fujisawa Y, Machida T, Igarashi K, Kaneko A, Mochiku T, Ooi S, Tachiki M, Komori K, Hirata K and Sakata H 2015 J. Phys. Soc. Jpn. 84 043706 doi: 10.7566/JPSJ.84.043706

    CrossRef Google Scholar

    [28]
    Yu R B S, Lei H, Abeykoon M, Petrovic C, Guguchia Z and Bozin E S 2018 Phys. Rev. B 98 134506 doi: 10.1103/PhysRevB.98.134506

    CrossRef Google Scholar

    [29]
    Takubo K, Yamamoto K, Hirata Y, Wadati H, Mizokawa T, Sutarto R, He F, Ishii K, Yamasaki Y, Nakao H, Murakami Y, Matsuo G, Ishii H, Kobayashi M, Kudo K and Nohara M 2018 Phys. Rev. B 97 205142 doi: 10.1103/PhysRevB.97.205142

    CrossRef Google Scholar

    [30]
    Yan D, Zeng Y J, Wang G H, Liu Y Y, Yin J J, Chang T R, Lin H, Wang M, Ma J, Jia S, Yao D X and Luo H X 2019 arXiv:1908.05438 [cond-mat.supr-con]

    Google Scholar

    [31]
    Yan D, Zeng L Y, Lin Y S, Yin J J, He Y, Zhang X, Huang M L, Shen B, Wang M, Wang Y H, Yao D X and Luo H X 2019 Phys. Rev. B 100 174504 doi: 10.1103/PhysRevB.100.174504

    CrossRef Google Scholar

    [32]
    Yan D, Zeng Y, Zeng L Y, Yin J, He Y, Boubeche M, Wang M, Wang Y, Yao D X and Luo H X 2020 arXiv:2003.11463 [cond-mat.supr-con]

    Google Scholar

    [33]
    Kamihara Y, Watanabe T, Hirano M and Hosono H 2008 J. Am. Chem. Soc. 130 3296 doi: 10.1021/ja800073m

    CrossRef Google Scholar

    [34]
    Lu D H Y M, Mo S K, Erickson A S, Analytis J, Chu J H, Singh D J, Hussain Z, Geballe T H, Fisher I R and Shen Z X 2008 Nature 455 81 doi: 10.1038/nature07263

    CrossRef Google Scholar

    [35]
    Che L, Le T, Huang Q, Yin L, Chen Y, Yang X, Xu Z A and Lu X 2019 Phys. Rev. B 99 024512 doi: 10.1103/PhysRevB.99.024512

    CrossRef Google Scholar

    [36]
    Rusinov I P, Menshchikova T V, Isaeva A, Eremeev S V, Koroteev Y M, Vergniory M G, Echenique P M and Chulkov E V 2016 Sci. Rep. 6 20734 doi: 10.1038/srep20734

    CrossRef Google Scholar

    [37]
    Pisoni A, Gaál R, Zeugner A, Falkowski V, Isaeva A, Huppertz H, Autès G, O, Yazyev V and F 2017 Phys. Rev. B 95 235149 doi: 10.1103/PhysRevB.95.235149

    CrossRef Google Scholar

    [38]
    Rodríguez-Carvajal J 2001 Commission on Powder Diffraction IUCr Newsletter, 26, 12–19

    Google Scholar

    [39]
    Vegard L 1921 Z. Phys. 5 17 doi: 10.1007/BF01349680

    CrossRef Google Scholar

    [40]
    Scholz G 1997 Solid State Ionics 100 135 doi: 10.1016/S0167-27389700344-5

    CrossRef Google Scholar

    [41]
    Baranov N V, Maksimov V I, Mesot J, Pleschov V G, Podlesnyak A, Pomjakushin V and Selezneva N V 2007 J. Phys.: Condens. Matter 19 016005 doi: 10.1088/0953-8984/19/1/016005

    CrossRef Google Scholar

    [42]
    Selezneva N V, Sherokalova E M, Pleshchev V G, Kazantsev V A and Baranov N V 2016 J. Phys.: Condens. Matter 28 315401 doi: 10.1088/0953-8984/28/31/315401

    CrossRef Google Scholar

    [43]
    Liu Y, Ang R, Lu W J, Song W H, Li L J and Sun Y P 2013 Appl. Phys. Lett. 102 192602 doi: 10.1063/1.4805003

    CrossRef Google Scholar

    [44]
    Li L, Deng X, Wang Z, Liu Y, Abeykoon M, Dooryhee E, Tomic A, Huang Y, Warren J B, Bozin E S, Billinge S J L, Sun Y, Zhu Y, Kotliar G and Petrovic C 2017 npj Quantum Mater. 2 11 doi: 10.1038/s41535-017-0016-9

    CrossRef Google Scholar

    [45]
    McMillan W L 1968 Phys. Rev. 167 331 doi: 10.1103/PhysRev.167.331

    CrossRef Google Scholar

    [46]
    Winiarski M J, Wiendlocha B et al. 2016 Phys. Chem. Chem. Phys. 18 21737 doi: 10.1039/C6CP02856J

    CrossRef Google Scholar

    [47]
    Yadav C S and Paulose P L 2009 New J. Phys. 11 103046 doi: 10.1088/1367-2630/11/10/103046

    CrossRef Google Scholar

    [48]
    Wilson J A, Barker A S, Di Salvo Jr F J and Ditzenberger J A 1978 Phys. Rev. B 18 2866 doi: 10.1103/PhysRevB.18.2866

    CrossRef Google Scholar

    [49]
    Kohn W 1967 Phys. Rev. Lett. 19 439 doi: 10.1103/PhysRevLett.19.439

    CrossRef Google Scholar

    [50]
    Werthamer N R, Helfand E and Hohenberg P C 1966 Phys. Rev. 147 415 doi: 10.1103/PhysRev.147.415

    CrossRef Google Scholar

    [51]
    Kresin V Z and Wolf S A 1990 Fundamentals of Superconductivity New York: Plenum Press p 150

    Google Scholar

    [52]
    Clogston A M 1962 Phys. Rev. Lett. 9 266 doi: 10.1103/PhysRevLett.9.266

    CrossRef Google Scholar

    [53]
    Ginzburg V L and Landau L D 1950 Zh. Eksp. Teor. Fiz 20 1064

    Google Scholar

  • Related Articles

    [1]Atul Tyagi, Keerti Sharma. Locally Rotationally Symmetric Bianchi Type-II Magnetized String Cosmological Model with Bulk Viscous Fluid in General Relativity [J]. Chin. Phys. Lett., 2011, 28(8): 089802. doi: 10.1088/0256-307X/28/8/089802
    [2]T. Hayat, F. M. Abbasi, Awatif A. Hendi. Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid [J]. Chin. Phys. Lett., 2011, 28(4): 044701. doi: 10.1088/0256-307X/28/4/044701
    [3]Atul Tyagi, Keerti Sharma, Payal Jain. Bianchi Type-IX String Cosmological Models for Perfect Fluid Distribution in General Relativity [J]. Chin. Phys. Lett., 2010, 27(7): 079801. doi: 10.1088/0256-307X/27/7/079801
    [4]PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai. Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates [J]. Chin. Phys. Lett., 2009, 26(7): 070203. doi: 10.1088/0256-307X/26/7/070203
    [5]BALI Raj, PAREEK Umesh Kumar, PRADHAN Anirudh. Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in General Relativity [J]. Chin. Phys. Lett., 2007, 24(8): 2455-2458.
    [6]DING Chi-Kun, JING Ji-Liang. Statistical-Mechanical Entropies of Schwarzschild Black Hole due to Arbitrary Spin Fields in Different Coordinates [J]. Chin. Phys. Lett., 2007, 24(8): 2189-2192.
    [7]LI Kang, CHAMOUN Nidal. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics [J]. Chin. Phys. Lett., 2007, 24(5): 1183-1186.
    [8]ZHANG Jing-Yi, ZHAO Zheng. New Coordinates for the Evaporating Vaidya Black Hole [J]. Chin. Phys. Lett., 2006, 23(5): 1099-1102.
    [9]ZHAO He-ping, LIU Zheng-you, SHEN Jia-rui, LIU You-yan. Mechanical Properties of an Ideal Electrorheological Fluid: Metal-Particle/Insulating Oil System [J]. Chin. Phys. Lett., 1999, 16(4): 304-306.
    [10]LIU Quan-hui. The Most General Harmonic Coordinates for Kerr Metric [J]. Chin. Phys. Lett., 1998, 15(5): 313-314.

Catalog

    Article views (376) PDF downloads (429) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return