[1] | Cava R J, Van Dover R B, Batlogg B and Rietman E A 1987 Phys. Rev. Lett. 58 408 | Bulk superconductivity at 36 K in
[2] | Kamihara Y, Watanabe T, Hirano M et al. 2008 J. Am. Chem. Soc. 130 3296 | Iron-Based Layered Superconductor La[O 1- x F x ]FeAs ( x = 0.05−0.12) with T c = 26 K
[3] | Hsu F C, Luo J Y, Yeh K W et al. 2008 Proc. Natl. Acad. Sci. USA 105 14262 | Superconductivity in the PbO-type structure -FeSe
[4] | Mizuguchi Y, Tomioka F, Tsuda S et al. 2008 Appl. Phys. Lett. 93 152505 | Superconductivity at 27K in tetragonal FeSe under high pressure
[5] | Sun Y, Lv J, Xie Y, Liu H and Ma Y M 2019 Phys. Rev. Lett. 123 097001 | Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure
[6] | Xie H, Yao Y, Feng X et al. 2020 Phys. Rev. Lett. 125 217001 | Hydrogen Pentagraphenelike Structure Stabilized by Hafnium: A High-Temperature Conventional Superconductor
[7] | Shi W, Yu J, Xu T et al. 2021 Sci. Chin. Mater. 64 664 | Superconductivity in two-dimensional η-Mo3C2 films
[8] | Chen J 2021 J. Supercond. Nov. Magn. (in press) | Enhanced Electron–Phonon Coupling and Superconductivity in Two-dimensional BC2N via Lithium Deposition: a First-Principles Investigation
[9] | Yang C, Liu Y and Wang Y 2019 Science 366 1505 | Intermediate bosonic metallic state in the superconductor-insulator transition
[10] | Wang X, Li H and Dong Z 2019 Acta Phys. Sin. 68 027401 (in Chinese) | Magnetism and electronic properties of LiFeAs superconducting thin filma under two-dimensional strains effect
[11] | Liang C, Zhang J and Zhao K 2020 Acta Phys. Sin. 69 237401 (in Chinese) | Superconducting and flux pinning properties of FeSexTe1–x topological superconductors
[12] | Miao M S and Hoffmann R 2014 Acc. Chem. Res. 47 1311 | High Pressure Electrides: A Predictive Chemical and Physical Theory
[13] | Miao M S, Wang X L and Brgoch J 2015 J. Am. Chem. Soc. 137 14122 | Anionic Chemistry of Noble Gases: Formation of Mg–NG (NG = Xe, Kr, Ar) Compounds under Pressure
[14] | Miyakawa M, Kim S W and Hirano M 2007 J. Am. Chem. Soc. 129 7270 | Superconductivity in an Inorganic Electride 12CaO·7Al 2 O 3 :e -
[15] | Zhang Y, Wang B and Xiao Z 2017 npj Quantum Mater. 2 45 | Electride and superconductivity behaviors in Mn5Si3-type intermetallics
[16] | Ge Y, Guan S and Liu Y 2017 New J. Phys. 19 123020 | Two dimensional superconductors in electrides
[17] | Wang J, Hanzawa K and Hiramatsu H 2017 J. Am. Chem. Soc. 139 15668 | Exploration of Stable Strontium Phosphide-Based Electrides: Theoretical Structure Prediction and Experimental Validation
[18] | Lu Y, Li J and Tada T 2016 J. Am. Chem. Soc. 138 3970 | Water Durable Electride Y 5 Si 3 : Electronic Structure and Catalytic Activity for Ammonia Synthesis
[19] | Matsuoka T and Shimizu K 2009 Nature 458 186 | Direct observation of a pressure-induced metal-to-semiconductor transition in lithium
[20] | Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 146401 | Dense Low-Coordination Phases of Lithium
[21] | Ma Y, Eremets M, Oganov A R et al. 2009 Nature 458 182 | Transparent dense sodium
[22] | Pickard C J and Needs R J 2011 Phys. Rev. Lett. 107 087201 | Predicted Pressure-Induced -Band Ferromagnetism in Alkali Metals
[23] | Li P, Gao G and Wang Y 2010 J. Phys. Chem. C 114 21745 | Crystal Structures and Exotic Behavior of Magnesium under Pressure
[24] | Dong X, Oganov A R, Goncharov A F et al. 2017 Nat. Chem. 9 440 | A stable compound of helium and sodium at high pressure
[25] | Zhu Q, Oganov A R and Lyakhov A O 2013 Phys. Chem. Chem. Phys. 15 7696 | Novel stable compounds in the Mg–O system under high pressure
[26] | Botana J, Brgoch J, Hou C et al. 2016 Inorg. Chem. 55 9377 | Iodine Anions beyond −1: Formation of Li n I ( n = 2–5) and Its Interaction with Quasiatoms
[27] | Shao S, Zhu W, Lv J et al. 2020 npj Comput. Mater. 6 11 | The exotically stoichiometric compounds in Al–S system under high pressure
[28] | Sa B, Xiong R, Wen C et al. 2020 J. Phys. Chem. C 124 7683 | Electronic Anisotropy and Superconductivity in One-Dimensional Electride Ca 3 Si
[29] | Zhao Z, Zhang S and Yu T 2019 Phys. Rev. Lett. 122 097002 | Predicted Pressure-Induced Superconducting Transition in Electride
[30] | Zhang Y, Wang H, Wang Y, Zhang L and Ma Y 2017 Phys. Rev. X 7 011017 | Computer-Assisted Inverse Design of Inorganic Electrides
[31] | Zhu Q, Frolov T and Choudhary K 2019 Matter 1 1293 | Computational Discovery of Inorganic Electrides from an Automated Screening
[32] | Wang Y, Lv J and Zhu L 2010 Phys. Rev. B 82 094116 | Crystal structure prediction via particle-swarm optimization
[33] | Wang Y, Lv J and Zhu L 2012 Comput. Phys. Commun. 183 2063 | CALYPSO: A method for crystal structure prediction
[34] | Oganov A R and Glass C W 2006 J. Chem. Phys. 124 244704 | Crystal structure prediction using ab initio evolutionary techniques: Principles and applications
[35] | Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 | How Evolutionary Crystal Structure Prediction Works—and Why
[36] | Lyakhov A O, Oganov A R and Stokes H T 2013 Comput. Phys. Commun. 184 1172 | New developments in evolutionary structure prediction algorithm USPEX
[37] | Chu B H, Zhao Y, Yan J L et al. 2018 Chin. Phys. Lett. 35 016401 | Ground State Structures of Boron-Rich Rhodium Boride: An Ab Initio Study
[38] | Sun G L, Huang H M and Li Y L 2016 Chin. Phys. Lett. 33 026104 | The Stable or Metastable Phases in Compressed Zn-O Systems
[39] | Wang C, Liu Y X, Chen X et al. 2020 Chin. Phys. Lett. 37 026201 | Stable Compositions, Structures and Electronic Properties in K–Ga SystemsUnder Pressure
[40] | Qu N R, Wang H C, Li Q et al. 2019 Chin. Phys. Lett. 36 036201 | An Orthorhombic Phase of Superhard o -BC 4 N *
[41] | Cang Y P, Lian S B, Yang H M et al. 2016 Chin. Phys. Lett. 33 066301 | Predicting Physical Properties of Tetragonal, Monoclinic and Orthorhombic M 3 N 4 ( M =C, Si, Sn) Polymorphs via First-Principles Calculations
[42] | Wu J H and Liu C X 2016 Chin. Phys. Lett. 33 036202 | Ground-State Structure and Physical Properties of NB 2 Predicted from First Principles
[43] | Zhou D, Zheng Y, Pu C et al. 2018 Chin. Phys. Lett. 35 107101 | Computational Prediction to Two-Dimensional SnAs
[44] | Zhang S, He J, Zhao Z et al. 2019 Chin. Phys. B 28 106104 | Discovery of superhard materials via CALYPSO methodology
[45] | Liu G, Yu Z, Liu H et al. 2018 J. Phys. Chem. Lett. 9 5785 | Unexpected Semimetallic BiS 2 at High Pressure and High Temperature
[46] | Peng F, Botana J, Wang Y et al. 2016 J. Phys. Chem. Lett. 7 4562 | Unexpected Trend in Stability of Xe–F Compounds under Pressure Driven by Xe–Xe Covalent Bonds
[47] | Kruglov I A, Semenok D V, Song H et al. 2020 Phys. Rev. B 101 024508 | Superconductivity of and polyhydrides
[48] | Rybkovskiy D V, Kvashnin A G, Kvashnina Y A et al. 2020 J. Phys. Chem. Lett. 11 2393 | Structure, Stability, and Mechanical Properties of Boron-Rich Mo–B Phases: A Computational Study
[49] | Wan B, Zhang J, Wu L et al. 2019 Chin. Phys. B 28 106201 | High-pressure electrides: From design to synthesis
[50] | Tong Q, Lv J, Gao P et al. 2019 Chin. Phys. B 28 106105 | The CALYPSO methodology for structure prediction
[51] | Tian Y, Sun W, Chen B et al. 2019 Chin. Phys. B 28 103104 | Cluster structure prediction via CALYPSO method
[52] | Tang C, Kour G and Du A 2019 Chin. Phys. B 28 107306 | Recent progress on the prediction of two-dimensional materials using CALYPSO
[53] | Lin J, Du X and Yang G 2019 Chin. Phys. B 28 106106 | Pressure-induced new chemistry
[54] | Hermann A 2019 Chin. Phys. B 28 106107 | Geoscience material structures prediction via CALYPSO methodology
[55] | Cui W and Li Y 2019 Chin. Phys. B 28 107104 | The role of CALYPSO in the discovery of high- T c hydrogen-rich superconductors
[56] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[57] | Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[58] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[59] | Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063 | First-Principles Determination of the Soft Mode in Cubic
[60] | Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures
[61] | Becke A D and Edgecombe K E 1990 J. Chem. Phys. 92 5397 | A simple measure of electron localization in atomic and molecular systems
[62] | Bader R F 1985 Acc. Chem. Res. 18 9 | Atoms in molecules
[63] | Henkelman G, Arnaldsson A and Jónsson H 2006 Comput. Mater. Sci. 36 354 | A fast and robust algorithm for Bader decomposition of charge density
[64] | Tang W, Sanville E and Henkelman G 2009 J. Phys.: Condens. Matter 21 084204 | A grid-based Bader analysis algorithm without lattice bias
[65] | Maintz S, Deringer V L and Tchougréeff A L 2013 J. Comput. Chem. 34 2557 | Analytic projection from plane-wave and PAW wavefunctions and application to chemical-bonding analysis in solids
[66] | Deringer V L, Tchougréeff A L and Dronskowski R 2011 J. Phys. Chem. A 115 5461 | Crystal Orbital Hamilton Population (COHP) Analysis As Projected from Plane-Wave Basis Sets
[67] | Maintz S, Deringer V L and Tchougréeff A L 2016 J. Comput. Chem. 37 1030 | LOBSTER: A tool to extract chemical bonding from plane-wave based DFT
[68] | Giannozzi P, Baroni S, Bonini N et al. 2009 J. Phys.: Condens. Matter 21 395502 | QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
[69] | Allen P B and Dynes R C 1975 Phys. Rev. B 12 905 | Transition temperature of strong-coupled superconductors reanalyzed