[1] | Zhao B, Hu M, Ao X, Chen N and Pei G 2019 Appl. Energy 236 489 | Radiative cooling: A review of fundamentals, materials, applications, and prospects
[2] | Li W and Fan S 2018 Opt. Express 26 15995 | Nanophotonic control of thermal radiation for energy applications [Invited]
[3] | Zeyghami M, Goswami D Y and Stefanakos E 2018 Sol. Energy Mater. Sol. Cells 178 115 | A review of clear sky radiative cooling developments and applications in renewable power systems and passive building cooling
[4] | Hossain M M and Gu M 2016 Adv. Sci. 3 1500360 | Radiative Cooling: Principles, Progress, and Potentials
[5] | Zhao D, Aili A, Zhai Y, Xu S, Tan G, Yin X and Yang R 2019 Appl. Phys. Rev. 6 021306 | Radiative sky cooling: Fundamental principles, materials, and applications
[6] | Fan S and Raman A 2018 Natl. Sci. Rev. 5 132 | Metamaterials for radiative sky cooling
[7] | Song J, Seo J, Han J, Lee J and Lee B J 2020 Appl. Phys. Lett. 117 094101 | Ultrahigh emissivity of grating-patterned PDMS film from 8 to 13 μ m wavelength regime
[8] | Catrysse P B, Song A Y and Fan S 2016 ACS Photon. 3 2420 | Photonic Structure Textile Design for Localized Thermal Cooling Based on a Fiber Blending Scheme
[9] | Wu W, Lin S, Wei M, Huang J, Xu H, Lu Y and Song W 2020 Sol. Energy Mater. Sol. Cells 210 110512 | Flexible passive radiative cooling inspired by Saharan silver ants
[10] | Wu D, Liu C, Xu Z, Liu Y, Yu Z, Yu L, Chen L, Li R, Ma R and Ye H 2018 Mater. & Des. 139 104 | The design of ultra-broadband selective near-perfect absorber based on photonic structures to achieve near-ideal daytime radiative cooling
[11] | Zhai Y, Ma Y, David S N, Zhao D, Lou R, Tan G, Yang R and Yin X 2017 Science 355 1062 | Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling
[12] | Huang Z and Ruan X 2017 Int. J. Heat Mass Transfer 104 890 | Nanoparticle embedded double-layer coating for daytime radiative cooling
[13] | Gamage S, Kang E S H, Akerlind C, Sardar S, Edberg J, Kariis H, Ederth T, Berggren M and Jonsson M P 2020 J. Mater. Chem. C 8 11687 | Transparent nanocellulose metamaterial enables controlled optical diffusion and radiative cooling
[14] | Yu W, Lu Y, Chen X, Xu H, Shoo J, Chen X, Sun Y, Hao J and Dai N 2019 Adv. Opt. Mater. 7 1900841 | Large‐Area, Broadband, Wide‐Angle Plasmonic Metasurface Absorber for Midwavelength Infrared Atmospheric Transparency Window
[15] | Liu X, Chang Q, Yan M, Wang X, Zhang H, Zhou H and Fan T 2020 Phys. Chem. Chem. Phys. 22 13965 | Scalable spectrally selective mid-infrared meta-absorbers for advanced radiative thermal engineering
[16] | Li Y, Li L, Wang F, Ge H, Xie R and An B 2020 Opt. Mater. Express 10 682 | Two broad absorption bands in infrared atmosphere transparent windows by trapezoid multilayered grating
[17] | Liu D, Xu Y and Xuan Y 2020 Appl. Opt. 59 6861 | Fabry–Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling
[18] | Shrestha S, Wang Y, Overvig A C, Lu M, Stein A, Dal N L and Yu N 2018 ACS Photon. 5 3526 | Indium Tin Oxide Broadband Metasurface Absorber
[19] | Zou C, Ren G, Hossain M M, Nirantar S, Withayachumnankul W, Ahmed T, Bhaskaran M, Sriram S, Gu M and Fumeaux C 2017 Adv. Opt. Mater. 5 1700460 | Metal-Loaded Dielectric Resonator Metasurfaces for Radiative Cooling
[20] | Alaee R, Albooyeh M and Rockstuhl C 2017 J. Phys. D 50 503002 | Theory of metasurface based perfect absorbers
[21] | Landy N I, Sajuyigbe S, Mock J J, Smith D R and Padilla W J 2008 Phys. Rev. Lett. 100 207402 | Perfect Metamaterial Absorber
[22] | Yu P, Besteiro L V, Huang Y, Wu J, Fu L, Tan H H, Jagadish C, Wiederrecht G P, Govorov A O and Wang Z 2019 Adv. Opt. Mater. 7 1800995 | Broadband Metamaterial Absorbers
[23] | Watts C M, Liu X and Padilla W J 2012 Adv. Mater. 24 OP98 | Metamaterial Electromagnetic Wave Absorbers
[24] | Qu C, Ma S, Hao J, Qiu M, Li X, Xiao S, Miao Z, Dai N, He Q, Sun S and Zhou L 2015 Phys. Rev. Lett. 115 235503 | Tailor the Functionalities of Metasurfaces Based on a Complete Phase Diagram
[25] | Kim T, Bae J Y, Lee N and Cho H H 2019 Adv. Funct. Mater. 29 1807319 | Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Microwaves
[26] | Li W, Guler U, Kinsey N, Naik G V, Boltasseva A, Guan J, Shalaev V M and Kildishev A V 2014 Adv. Mater. 26 7959 | Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber
[27] | Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342 | Infrared Perfect Absorber and Its Application As Plasmonic Sensor
[28] | Ustun K and Turhan-Sayan G 2016 J. Appl. Phys. 120 203101 | Wideband long wave infrared metamaterial absorbers based on silicon nitride
[29] | Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S and Fang N X 2012 Nano Lett. 12 1443 | Ultrabroadband Light Absorption by a Sawtooth Anisotropic Metamaterial Slab
[30] | Contractor R, D'Aguanno G and Menyuk C 2018 Opt. Express 26 24031 | Ultra-broadband, polarization-independent, wide-angle absorption in impedance-matched metamaterials with anti-reflective moth-eye surfaces
[31] | Bossard J A, Lin L, Yun S, Liu L, Werner D H and Mayer T S 2014 ACS Nano 8 1517 | Near-Ideal Optical Metamaterial Absorbers with Super-Octave Bandwidth
[32] | Zhang H, Zhang H, Yang J and Liu J 2019 Opt. Express 27 5346 | Ultra-broadband infrared metasurface absorber: comment
[33] | Feng Q, Pu M B, Hu C G and Luo X G 2012 Opt. Lett. 37 2133 | Engineering the dispersion of metamaterial surface for broadband infrared absorption
[34] | Ye D, Wang Z, Xu K, Li H, Huangfu J, Wang Z and Ran L 2013 Phys. Rev. Lett. 111 187402 | Ultrawideband Dispersion Control of a Metamaterial Surface for Perfectly-Matched-Layer-Like Absorption
[35] | Hossain M M, Jia B and Gu M 2015 Adv. Opt. Mater. 3 1047 | A Metamaterial Emitter for Highly Efficient Radiative Cooling
[36] | Ordal M A, Bell R J, Alexander R W, J, Long L L and Querry M R 1985 Appl. Opt. 24 4493 | Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W
[37] | Zhou J, Economon E N, Koschny T and Soukoulis C M 2006 Opt. Lett. 31 3620 | Unifying approach to left-handed material design
[38] | Li Y, Zhang P, Liu Y, Jiang R, Gong Y, Deng L and Zhou P 2020 Opt. Commun. 472 126015 | Infrared epsilon-near-zero absorption excited by magnetic dipole resonance
[39] | Zhang N, Zhou P, Cheng D, Weng X, Xie J and Deng L 2013 Opt. Lett. 38 1125 | Dual-band absorption of mid-infrared metamaterial absorber based on distinct dielectric spacing layers
[40] | ITransmission Spectra R , Gemini Observatory (accessed: August 2020) |
[41] | Peng L, Liu D and Cheng H 2019 Sol. Energy Mater. Sol. Cells 193 7 | Design and fabrication of the ultrathin metallic film based infrared selective radiator
[42] | Liu X, Starr T, Starr A F and Padilla W J 2010 Phys. Rev. Lett. 104 207403 | Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance
[43] | Hsu P C, Liu C, Song A Y, Zhang Z, Peng Y, Xie J, Liu K, Wu C L, Catrysse P B, Cai L, Zhai S, Majumdar A, Fan S and Cui Y 2017 Sci. Adv. 3 e1700895 | A dual-mode textile for human body radiative heating and cooling
[44] | Chen Z, Zhu L, Raman A and Fan S 2016 Nat. Commun. 7 13729 | Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle
[45] | Lochbaum A, Dorodnyy A, Koch U, Koepfli S M, Volk S, Fedoryshyn Y, Wood V and Leuthold J 2020 Nano Lett. 20 4169 | Compact Mid-Infrared Gas Sensing Enabled by an All-Metamaterial Design
[46] | Wei Q, Huang L, Zentgraf T and Wang Y 2020 Nanophotonics 9 987 | Optical wavefront shaping based on functional metasurfaces