Effective Interaction Force between an Electric Charge and a Magnetic Dipole and Locality (or Nonlocality) in Quantum Effects of the Aharonov–Bohm Type
-
Abstract
Classical electrodynamics foresees that the effective interaction force between a moving charge and a magnetic dipole is modified by the time-varying total momentum of the interaction fields. We derive the equations of motion of the particles from the total stress-energy tensor, assuming the validity of Maxwell's equations and the total momentum conservation law. Applications to the effects of Aharonov–Bohm type show that the observed phase shift may be due to the relative lag between interfering particles caused by the effective local force. -
-
References
[1] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485 doi: 10.1103/PhysRev.115.485[2] Aharonov Y and Casher A 1984 Phys. Rev. Lett. 53 319 doi: 10.1103/PhysRevLett.53.319[3] Spavieri G 1999 Phys. Rev. Lett. 82 3932 doi: 10.1103/PhysRevLett.82.3932[4] Spavieri G 1998 Phys. Rev. Lett. 81 1533 doi: 10.1103/PhysRevLett.81.1533[5] Spavieri G 1999 Phys. Rev. A 59 3194 doi: 10.1103/PhysRevA.59.3194[6] Aharonov Y, Pearle P and Vaidman L 1988 Phys. Rev. A 37 4052 doi: 10.1103/PhysRevA.37.4052[7] Vaidman L 2012 Phys. Rev. A 86 040101 doi: 10.1103/PhysRevA.86.040101[8] Kang K 2015 Phys. Rev. A 91 052116 doi: 10.1103/PhysRevA.91.052116[9] Becker M and Batelaan H 2016 Europhys. Lett. 115 10011 doi: 10.1209/0295-5075/115/10011[10] Boyer T H 1973 Phys. Rev. D 8 1667 doi: 10.1103/PhysRevD.8.1667[11] Boyer T H 1973 Phys. Rev. D 8 1679 doi: 10.1103/PhysRevD.8.1679[12] Boyer T H 2000 Found. Phys. 30 893 doi: 10.1023/A:1003602524894[13] Boyer T H 2015 Phys. Rev. E 91 013201 doi: 10.1103/PhysRevE.91.013201[14] Boyer T H 1987 Phys. Rev. A 36 5083 doi: 10.1103/PhysRevA.36.5083[15] Coleman S and Van Vleck J H 1968 Phys. Rev. 171 1370 doi: 10.1103/PhysRev.171.1370[16] Peshkin M and Lipkin H J 1995 Phys. Rev. Lett. 74 2847 doi: 10.1103/PhysRevLett.74.2847[17] Spavieri G and Cavalleri G 1992 Europhys. Lett. 18 301 doi: 10.1209/0295-5075/18/4/004[18] Griffiths R B 2020 Phys. Rev. A 101 022117 doi: 10.1103/PhysRevA.101.022117[19] Chambers R G 1960 Phys. Rev. Lett. 5 3 doi: 10.1103/PhysRevLett.5.3[20] Tonomura A, Osakabe N, Matsuda T, Kawasaki T, Endo J, Yano S and Yamada H 1986 Phys. Rev. Lett. 56 792 doi: 10.1103/PhysRevLett.56.792[21] Cimmino A, Opat G I, Klein A G, Kaiser H, Werner S A, Arif M and Clothier R 1989 Phys. Rev. Lett. 63 380 doi: 10.1103/PhysRevLett.63.380[22] Sangster K, Hinds E A, Barnett S M and Riis E 1993 Phys. Rev. Lett. 71 3641 doi: 10.1103/PhysRevLett.71.3641[23] Sangster K, Hinds E A, Barnett S M, Riis E and Sinclair A G 1995 Phys. Rev. A 51 1776 doi: 10.1103/PhysRevA.51.1776[24] Casella R C 1990 Phys. Rev. Lett. 65 2217 doi: 10.1103/PhysRevLett.65.2217[25] Shockley W and James R P 1967 Phys. Rev. Lett. 18 876 doi: 10.1103/PhysRevLett.18.876[26] Spavieri G 1994 Nuovo Cimento B 109 45 doi: 10.1007/BF02723729[27] Spavieri G 2006 Eur. Phys. J. D 37 327 doi: 10.1140/epjd/e2005-00328-9[28] Spavieri G and Mansuripur M 2015 Phys. Scr. 90 085501 doi: 10.1088/0031-8949/90/8/085501[29] Spavieri G 2016 Eur. Phys. J. D 70 263 doi: 10.1140/epjd/e2016-70006-0[30] Spavieri G and Gillies G 2003 Nuovo Cimento B 118 205[31] Spavieri G, Erazo J, Sanchez A, Aguirre F, Gillies G and Rodriguez M 2008 Front. Phys. Chin. 3 239 doi: 10.1007/s11467-008-0036-9[32] Zhu X and Henneberger W 1990 J. Phys. A 23 3983 doi: 10.1088/0305-4470/23/17/027[33] Jackson J D 1975 Classical Electrodynamics 2nd edn New York: John Wiley & Sons sections 5 and 6