-
Abstract
We prove that under the condition of closed boundary to mass flux, pure advection is not a valid mechanism to make a practical thermal diode. Among the various designs of thermal diodes, many of them involve circulating fluid flow, such as in thermosyphons. However, those designs often employ natural convection, which is basically a nonlinear process. It thus remains unclear how the pure advection of temperature field induced by a decoupled velocity field influences the symmetry of heat transfer. Here we study three typical models with pure advection: one with open boundary, one with closed boundary at unsteady state, and one with closed boundary at steady state. It is shown that only the last model is practical, while it cannot become a thermal diode. Finally, a general proof is given for our claim by analyzing the diffusive reciprocity. -
-
References
[1] Potton R J 2004 Rep. Prog. Phys. 67 717 doi: 10.1088/0034-4885/67/5/R03[2] Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X and Cheng J 2019 Phys. Rev. Lett. 122 014302 doi: 10.1103/PhysRevLett.122.014302[3] Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alù A, Daraio C, Norris A N, Huang G and Haberman M R 2020 Nat. Rev. Mater. 5 667 doi: 10.1038/s41578-020-0206-0[4] Li Y, Li J, Qi M H, Qiu C W and Chen H S 2021 Phys. Rev. B 103 014307 doi: 10.1103/PhysRevB.103.014307[5] Silveirinha M G 2019 Opt. Express 27 14328 doi: 10.1364/OE.27.014328[6] Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K and Deck-Léger Z L 2018 Phys. Rev. Appl. 10 047001 doi: 10.1103/PhysRevApplied.10.047001[7] Onsager L 1931 Phys. Rev. 37 405 doi: 10.1103/PhysRev.37.405[8] Casimir H B G 1945 Rev. Mod. Phys. 17 343 doi: 10.1103/RevModPhys.17.343[9] Floess D, Chin J Y, Kawatani A, Dregely D, Habermeier H U, Weiss T and Giessen H 2015 Light: Sci. & Appl. 4 e284 doi: 10.1038/lsa.2015.57[10] Zhu L and Fan S 2014 Phys. Rev. B 90 220301 doi: 10.1103/PhysRevB.90.220301[11] Zhao B, Shi Y, Wang J, Zhao Z, Zhao N and Fan S 2019 Opt. Lett. 44 4203 doi: 10.1364/OL.44.004203[12] Hu H, Liu L, Hu X, Liu D and Gao D 2019 Photon. Res. 7 642 doi: 10.1364/PRJ.7.000642[13] Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H and Qiu C W 2020 arXiv:2008.07964 [physics.app-ph][14] Yang S, Wang J, Dai G, Yang F and Huang J 2020 Phys. Rep. in press doi: 10.1016/j.physrep.2020.12.006[15] Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C 2017 Appl. Phys. Rev. 4 041304 doi: 10.1063/1.5001072[16] Jones G F 1986 J. Sol. Energy Eng. 108 163 doi: 10.1115/1.3268088[17] Chen K 1988 J. Sol. Energy Eng. 110 299 doi: 10.1115/1.3268271[18] Bejan A 2013 Convection Heat Transfer New York: John Wiley & Sons[19] Xu L and Huang J 2020 Chin. Phys. Lett. 37 080502 doi: 10.1088/0256-307X/37/8/080502[20] Qing X, Jinxin Z, Jixiong H, Xiangfan X, Tsuneyoshi N, Yuanyuan W, Jun L, Jun Z and Baowen L 2020 Chin. Phys. Lett. 37 104401 doi: 10.1088/0256-307X/37/10/104401[21] Kobayashi W, Teraoka Y and Terasaki I 2009 Appl. Phys. Lett. 95 171905 doi: 10.1063/1.3253712[22] Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503 doi: 10.1103/PhysRevLett.115.195503[23] Li Y, Shen X, Huang J and Ni Y 2016 Phys. Lett. A 380 1641 doi: 10.1016/j.physleta.2016.02.040[24] Dai G and Huang J 2020 Int. J. Heat Mass Transfer 147 118917 doi: 10.1016/j.ijheatmasstransfer.2019.118917[25] Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45 doi: 10.30919/esee8c329[26] Shen X, Li Y, Jiang C and Huang J 2016 Phys. Rev. Lett. 117 055501 doi: 10.1103/PhysRevLett.117.055501[27] Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045 doi: 10.1103/RevModPhys.84.1045[28] Huang S Y, Zhang J W, Wang M, Lan W, Hu R and Luo X B 2019 ES Energy & Environ. 6 51 doi: 10.30919/esee8c330[29] Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S and Qiu C W 2019 Nat. Mater. 18 48 doi: 10.1038/s41563-018-0239-6[30] Xu G, Dong K, Li Y, Li H, Liu K, Li L, Wu J and Qiu C W 2020 Nat. Commun. 11 6028 doi: 10.1038/s41467-020-19909-0[31] Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170 doi: 10.1126/science.aaw6259[32] Cao P C, Li Y, Peng Y G and Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48 doi: 10.30919/esee8c365[33] Li J, Li Y, Cao P C, Yang T, Zhu X F, Wang W and Qiu C W 2020 Adv. Mater. 32 2003823 doi: 10.1002/adma.202003823[34] Li J, Li Y, Wang W, Li L and Qiu C W 2020 Opt. Express 28 25894 doi: 10.1364/OE.399799 -
Related Articles
[1] Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601 [2] Liujun Xu, Jiping Huang. Negative Thermal Transport in Conduction and Advection [J]. Chin. Phys. Lett., 2020, 37(8): 080502. doi: 10.1088/0256-307X/37/8/080502 [3] XU Yi-Ting, XU Jia-Lin, CUI Qian-Jin, XIE Shi-Yong, LU Yuan-Fu, BO Yong, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan. High Efficiency Multi-kW Diode-Side-Pumped Nd:YAG Laser with Reduced Thermal Effect [J]. Chin. Phys. Lett., 2010, 27(2): 024201. doi: 10.1088/0256-307X/27/2/024201 [4] YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition [J]. Chin. Phys. Lett., 2007, 24(7): 1934-1937. [5] LI Lan, FU Li-Wei, YANG Rui-Xia, LI Guang-Min, TAO Yi, ZHANG Na, ZHANG Xiao-Song. Thermal Behaviour for InGaAsP/InP Multi-Quantum-Well Superluminescent Diodes [J]. Chin. Phys. Lett., 2005, 22(8): 2130-2132. [6] YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator [J]. Chin. Phys. Lett., 2005, 22(3): 607-610. [7] LIN Yi-Qing, LU Ju-Fu, GU Wei-Min. Smooth Transition from Shakura-Sunyaev Disc to Advection-Dominated Accretion Flow [J]. Chin. Phys. Lett., 2003, 20(7): 1179-1182. [8] WANG Ding-Xiong, LEI Wei-Hua, XIAO Kan. A Toy Model for Advection Dominated Accretion Flows [J]. Chin. Phys. Lett., 2003, 20(6): 965-968. [9] GU Wei-Min, LU Ju-Fu. Radial Shocks in Advection-Dominated Accretion FlowsAround Black Holes [J]. Chin. Phys. Lett., 2001, 18(1): 148-150. [10] YUAN Feng, HUANG Ke-liang. Locations of Sonic Points in Advection Dominated Accretion Flows Around Black Holes [J]. Chin. Phys. Lett., 1999, 16(4): 310-312. -
Cited by
Periodical cited type(11)
1. Lei, M., Jin, P., Zhou, Y. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(44): e2410041121. DOI:10.1073/pnas.2410041121 2. Qiu, Y., Yang, F., Huang, J. et al. Giant and robust thermal nonreciprocity in a fluid-solid multiphase circulator. Physics of Fluids, 2024, 36(10): 103632. DOI:10.1063/5.0233551 3. Ju, R., Cao, P.-C., Wang, D. et al. Nonreciprocal Heat Circulation Metadevices. Advanced Materials, 2024, 36(3): 2309835. DOI:10.1002/adma.202309835 4. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002 5. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305 6. Lou, Q., Xia, M.-G. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial. Chinese Physics Letters, 2023, 40(9): 094401. DOI:10.1088/0256-307X/40/9/094401 7. Ju, R., Xu, G., Xu, L. et al. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. Advanced Materials, 2023, 35(23): 2209123. DOI:10.1002/adma.202209123 8. Chen, Z.-H., Wang, F.-Y., Chen, H. et al. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System. Chinese Physics Letters, 2023, 40(5): 050501. DOI:10.1088/0256-307X/40/5/050501 9. Qi, M., Wang, D., Cao, P.-C. et al. Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34(32): 2202241. DOI:10.1002/adma.202202241 10. Zhang, J., Zhang, H.-C., Huang, Z.-L. et al. Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film. Chinese Physics B, 2022, 31(1): 014402. DOI:10.1088/1674-1056/ac2809 11. Cao, P.-C., Li, Y., Peng, Y.-G. et al. Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4(1): 230. DOI:10.1038/s42005-021-00731-z Other cited types(0)