Advection and Thermal Diode

  • Received Date: November 27, 2020
  • Published Date: February 28, 2021
  • We prove that under the condition of closed boundary to mass flux, pure advection is not a valid mechanism to make a practical thermal diode. Among the various designs of thermal diodes, many of them involve circulating fluid flow, such as in thermosyphons. However, those designs often employ natural convection, which is basically a nonlinear process. It thus remains unclear how the pure advection of temperature field induced by a decoupled velocity field influences the symmetry of heat transfer. Here we study three typical models with pure advection: one with open boundary, one with closed boundary at unsteady state, and one with closed boundary at steady state. It is shown that only the last model is practical, while it cannot become a thermal diode. Finally, a general proof is given for our claim by analyzing the diffusive reciprocity.
  • Article Text

  • [1]
    Potton R J 2004 Rep. Prog. Phys. 67 717 doi: 10.1088/0034-4885/67/5/R03

    CrossRef Google Scholar

    [2]
    Ding Y, Peng Y, Zhu Y, Fan X, Yang J, Liang B, Zhu X, Wan X and Cheng J 2019 Phys. Rev. Lett. 122 014302 doi: 10.1103/PhysRevLett.122.014302

    CrossRef Google Scholar

    [3]
    Nassar H, Yousefzadeh B, Fleury R, Ruzzene M, Alù A, Daraio C, Norris A N, Huang G and Haberman M R 2020 Nat. Rev. Mater. 5 667 doi: 10.1038/s41578-020-0206-0

    CrossRef Google Scholar

    [4]
    Li Y, Li J, Qi M H, Qiu C W and Chen H S 2021 Phys. Rev. B 103 014307 doi: 10.1103/PhysRevB.103.014307

    CrossRef Google Scholar

    [5]
    Silveirinha M G 2019 Opt. Express 27 14328 doi: 10.1364/OE.27.014328

    CrossRef Google Scholar

    [6]
    Caloz C, Alù A, Tretyakov S, Sounas D, Achouri K and Deck-Léger Z L 2018 Phys. Rev. Appl. 10 047001 doi: 10.1103/PhysRevApplied.10.047001

    CrossRef Google Scholar

    [7]
    Onsager L 1931 Phys. Rev. 37 405 doi: 10.1103/PhysRev.37.405

    CrossRef Google Scholar

    [8]
    Casimir H B G 1945 Rev. Mod. Phys. 17 343 doi: 10.1103/RevModPhys.17.343

    CrossRef Google Scholar

    [9]
    Floess D, Chin J Y, Kawatani A, Dregely D, Habermeier H U, Weiss T and Giessen H 2015 Light: Sci. & Appl. 4 e284 doi: 10.1038/lsa.2015.57

    CrossRef Google Scholar

    [10]
    Zhu L and Fan S 2014 Phys. Rev. B 90 220301 doi: 10.1103/PhysRevB.90.220301

    CrossRef Google Scholar

    [11]
    Zhao B, Shi Y, Wang J, Zhao Z, Zhao N and Fan S 2019 Opt. Lett. 44 4203 doi: 10.1364/OL.44.004203

    CrossRef Google Scholar

    [12]
    Hu H, Liu L, Hu X, Liu D and Gao D 2019 Photon. Res. 7 642 doi: 10.1364/PRJ.7.000642

    CrossRef Google Scholar

    [13]
    Li Y, Li W, Han T C, Zheng X, Li J X, Li B W, Fan S H and Qiu C W 2020 arXiv:2008.07964 [physics.app-ph]

    Google Scholar

    [14]
    Yang S, Wang J, Dai G, Yang F and Huang J 2020 Phys. Rep. in press doi: 10.1016/j.physrep.2020.12.006

    CrossRef Google Scholar

    [15]
    Wehmeyer G, Yabuki T, Monachon C, Wu J and Dames C 2017 Appl. Phys. Rev. 4 041304 doi: 10.1063/1.5001072

    CrossRef Google Scholar

    [16]
    Jones G F 1986 J. Sol. Energy Eng. 108 163 doi: 10.1115/1.3268088

    CrossRef Google Scholar

    [17]
    Chen K 1988 J. Sol. Energy Eng. 110 299 doi: 10.1115/1.3268271

    CrossRef Google Scholar

    [18]
    Bejan A 2013 Convection Heat Transfer New York: John Wiley & Sons

    Google Scholar

    [19]
    Xu L and Huang J 2020 Chin. Phys. Lett. 37 080502 doi: 10.1088/0256-307X/37/8/080502

    CrossRef Google Scholar

    [20]
    Qing X, Jinxin Z, Jixiong H, Xiangfan X, Tsuneyoshi N, Yuanyuan W, Jun L, Jun Z and Baowen L 2020 Chin. Phys. Lett. 37 104401 doi: 10.1088/0256-307X/37/10/104401

    CrossRef Google Scholar

    [21]
    Kobayashi W, Teraoka Y and Terasaki I 2009 Appl. Phys. Lett. 95 171905 doi: 10.1063/1.3253712

    CrossRef Google Scholar

    [22]
    Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y and Huang J 2015 Phys. Rev. Lett. 115 195503 doi: 10.1103/PhysRevLett.115.195503

    CrossRef Google Scholar

    [23]
    Li Y, Shen X, Huang J and Ni Y 2016 Phys. Lett. A 380 1641 doi: 10.1016/j.physleta.2016.02.040

    CrossRef Google Scholar

    [24]
    Dai G and Huang J 2020 Int. J. Heat Mass Transfer 147 118917 doi: 10.1016/j.ijheatmasstransfer.2019.118917

    CrossRef Google Scholar

    [25]
    Yang F B, Xu L J and Huang J P 2019 ES Energy & Environ. 6 45 doi: 10.30919/esee8c329

    CrossRef Google Scholar

    [26]
    Shen X, Li Y, Jiang C and Huang J 2016 Phys. Rev. Lett. 117 055501 doi: 10.1103/PhysRevLett.117.055501

    CrossRef Google Scholar

    [27]
    Li N, Ren J, Wang L, Zhang G, Hänggi P and Li B 2012 Rev. Mod. Phys. 84 1045 doi: 10.1103/RevModPhys.84.1045

    CrossRef Google Scholar

    [28]
    Huang S Y, Zhang J W, Wang M, Lan W, Hu R and Luo X B 2019 ES Energy & Environ. 6 51 doi: 10.30919/esee8c330

    CrossRef Google Scholar

    [29]
    Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S and Qiu C W 2019 Nat. Mater. 18 48 doi: 10.1038/s41563-018-0239-6

    CrossRef Google Scholar

    [30]
    Xu G, Dong K, Li Y, Li H, Liu K, Li L, Wu J and Qiu C W 2020 Nat. Commun. 11 6028 doi: 10.1038/s41467-020-19909-0

    CrossRef Google Scholar

    [31]
    Li Y, Peng Y G, Han L, Miri M A, Li W, Xiao M, Zhu X F, Zhao J, Alù A, Fan S and Qiu C W 2019 Science 364 170 doi: 10.1126/science.aaw6259

    CrossRef Google Scholar

    [32]
    Cao P C, Li Y, Peng Y G and Qiu C W and Zhu X F 2020 ES Energy & Environ. 7 48 doi: 10.30919/esee8c365

    CrossRef Google Scholar

    [33]
    Li J, Li Y, Cao P C, Yang T, Zhu X F, Wang W and Qiu C W 2020 Adv. Mater. 32 2003823 doi: 10.1002/adma.202003823

    CrossRef Google Scholar

    [34]
    Li J, Li Y, Wang W, Li L and Qiu C W 2020 Opt. Express 28 25894 doi: 10.1364/OE.399799

    CrossRef Google Scholar

  • Related Articles

    [1]Rui-Peng Wang, Tao-Tao Yu, Muhammad Asif Shakoori, Ming-Jun Han, Yu-Xiao Hu, Ho-Kin Tang, Hai-Peng Li. Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure [J]. Chin. Phys. Lett., 2025, 42(4): 046601. doi: 10.1088/0256-307X/42/4/046601
    [2]Liujun Xu, Jiping Huang. Negative Thermal Transport in Conduction and Advection [J]. Chin. Phys. Lett., 2020, 37(8): 080502. doi: 10.1088/0256-307X/37/8/080502
    [3]XU Yi-Ting, XU Jia-Lin, CUI Qian-Jin, XIE Shi-Yong, LU Yuan-Fu, BO Yong, PENG Qin-Jun, CUI Da-Fu, XU Zu-Yan. High Efficiency Multi-kW Diode-Side-Pumped Nd:YAG Laser with Reduced Thermal Effect [J]. Chin. Phys. Lett., 2010, 27(2): 024201. doi: 10.1088/0256-307X/27/2/024201
    [4]YIN Cong, HUANG Lei, HE Fa-Hong, GONG Ma-Li. Thermal Performance of Laser Diode Array under Constant Convective Heat Transfer Boundary Condition [J]. Chin. Phys. Lett., 2007, 24(7): 1934-1937.
    [5]LI Lan, FU Li-Wei, YANG Rui-Xia, LI Guang-Min, TAO Yi, ZHANG Na, ZHANG Xiao-Song. Thermal Behaviour for InGaAsP/InP Multi-Quantum-Well Superluminescent Diodes [J]. Chin. Phys. Lett., 2005, 22(8): 2130-2132.
    [6]YAO Ai-Yun, HOU Wei, LI Hui-Qing, BI Yong, LIN Xue-Chun, GENG Ai-Cong, KONG Yu-Peng, CUI Da-Fu, XU Zu-Yan. Reducing Thermal Effect in End-Diode-Pumped Laser Crystal by Using a Novel Resonator [J]. Chin. Phys. Lett., 2005, 22(3): 607-610.
    [7]LIN Yi-Qing, LU Ju-Fu, GU Wei-Min. Smooth Transition from Shakura-Sunyaev Disc to Advection-Dominated Accretion Flow [J]. Chin. Phys. Lett., 2003, 20(7): 1179-1182.
    [8]WANG Ding-Xiong, LEI Wei-Hua, XIAO Kan. A Toy Model for Advection Dominated Accretion Flows [J]. Chin. Phys. Lett., 2003, 20(6): 965-968.
    [9]GU Wei-Min, LU Ju-Fu. Radial Shocks in Advection-Dominated Accretion FlowsAround Black Holes [J]. Chin. Phys. Lett., 2001, 18(1): 148-150.
    [10]YUAN Feng, HUANG Ke-liang. Locations of Sonic Points in Advection Dominated Accretion Flows Around Black Holes [J]. Chin. Phys. Lett., 1999, 16(4): 310-312.
  • Cited by

    Periodical cited type(11)

    1. Lei, M., Jin, P., Zhou, Y. et al. Reconfigurable, zero-energy, and wide-temperature loss-assisted thermal nonreciprocal metamaterials. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(44): e2410041121. DOI:10.1073/pnas.2410041121
    2. Qiu, Y., Yang, F., Huang, J. et al. Giant and robust thermal nonreciprocity in a fluid-solid multiphase circulator. Physics of Fluids, 2024, 36(10): 103632. DOI:10.1063/5.0233551
    3. Ju, R., Cao, P.-C., Wang, D. et al. Nonreciprocal Heat Circulation Metadevices. Advanced Materials, 2024, 36(3): 2309835. DOI:10.1002/adma.202309835
    4. Yang, F., Zhang, Z., Xu, L. et al. Controlling mass and energy diffusion with metamaterials. Reviews of Modern Physics, 2024, 96(1): 015002. DOI:10.1103/RevModPhys.96.015002
    5. Liu, Z., Huang, J. Topological Plasma Transport from a Diffusion View. Chinese Physics Letters, 2023, 40(11): 110305. DOI:10.1088/0256-307X/40/11/110305
    6. Lou, Q., Xia, M.-G. Autonomously Tuning Multilayer Thermal Cloak with Variable Thermal Conductivity Based on Thermal Triggered Dual Phase-Transition Metamaterial. Chinese Physics Letters, 2023, 40(9): 094401. DOI:10.1088/0256-307X/40/9/094401
    7. Ju, R., Xu, G., Xu, L. et al. Convective Thermal Metamaterials: Exploring High-Efficiency, Directional, and Wave-Like Heat Transfer. Advanced Materials, 2023, 35(23): 2209123. DOI:10.1002/adma.202209123
    8. Chen, Z.-H., Wang, F.-Y., Chen, H. et al. Modulation of Steady-State Heat Transport in a Dissipative Multi-Mode Qubit-Photon System. Chinese Physics Letters, 2023, 40(5): 050501. DOI:10.1088/0256-307X/40/5/050501
    9. Qi, M., Wang, D., Cao, P.-C. et al. Geometric Phase and Localized Heat Diffusion. Advanced Materials, 2022, 34(32): 2202241. DOI:10.1002/adma.202202241
    10. Zhang, J., Zhang, H.-C., Huang, Z.-L. et al. Construction and mechanism analysis on nanoscale thermal cloak by in-situ annealing silicon carbide film. Chinese Physics B, 2022, 31(1): 014402. DOI:10.1088/1674-1056/ac2809
    11. Cao, P.-C., Li, Y., Peng, Y.-G. et al. Diffusive skin effect and topological heat funneling. Communications Physics, 2021, 4(1): 230. DOI:10.1038/s42005-021-00731-z

    Other cited types(0)

Catalog

    Article views (362) PDF downloads (410) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return