Express Letter
Quantum Algorithm for Approximating Maximum Independent Sets
-
Abstract
We present a quantum algorithm for approximating maximum independent sets of a graph based on quantum non-Abelian adiabatic mixing in the sub-Hilbert space of degenerate ground states, which generates quantum annealing in a secondary Hamiltonian. For both sparse and dense random graphs , numerical simulation suggests that our algorithm on average finds an independent set of size close to the maximum size in low polynomial time. The best classical algorithms, by contrast, produce independent sets of size about half of in polynomial time. -
-
References
[1] Johån H 1999 Acta Math. 182 105 doi: 10.1007/BF02392825[2] Zuckerman D 2006 Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing New York: Association for Computing Machinery p 681 doi: 10.1145/1132516.1132612[3] Matula D W 1976 The Largest Clique Size in a Random Graph, Technical Report CS 7608 Department of Computer Science, Southern Methodist University, Dallas, Texas 75275[4] Coja-Oghlan A and Efthymiou C 2015 Random Struct. & Algorithms 47 436 doi: 10.1002/rsa.20550[5] Frieze A M 1990 Discrete Math. 81 171 doi: 10.1016/0012-365X9090149-C[6] Wu B, Yu H and Wilczek F 2020 Phys. Rev. A 101 012318 doi: 10.1103/PhysRevA.101.012318[7] Hu Y, Zhang Z and Wu B 2021 Chin. Phys. B 30 020308 doi: 10.1088/1674-1056/abd741[8] Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 doi: 10.1103/PhysRevLett.52.2111[9] Farhi E, Goldstone J, Gutmann S and Sipser M 2000 arXiv:quant-ph/0001106v1[10] Jerrum M 1992 Random Struct. & Algorithms 3 347 doi: 10.1002/rsa.3240030402[11] Ambainis A and Regev O 2004 arXiv:quant-ph/0411152[12] Farhi E and Gutmann S 1998 Phys. Rev. A 58 915 doi: 10.1103/PhysRevA.58.915 -
Related Articles
-
Supplements
Other Related Supplements
-
Cover image
23KB
-
-
Cited by
Periodical cited type(4)
1. Chen, Y.-Q., Xu, Y., Ma, Y.-Q. et al. Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning. Chinese Physics B, 2025, 34(1): 018701. DOI:10.1088/1674-1056/ad8ecb 2. Lan, P.D., Nissley, D.A., O’Brien, E.P. et al. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. Journal of Chemical Physics, 2024, 160(5): 055101. DOI:10.1063/5.0188053 3. Xu, Y., Huang, S.-W., Ding, H.-M. et al. Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer. Chinese Physics B, 2024, 33(2): 028701. DOI:10.1088/1674-1056/ad1178 4. Zhou, Y., Lin, X. Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations. Medicine in Novel Technology and Devices, 2023. DOI:10.1016/j.medntd.2023.100257 Other cited types(0)