[1] | Carmichael H J 1993 Phys. Rev. Lett. 70 2273 | Quantum trajectory theory for cascaded open systems
[2] | Lee T E 2016 Phys. Rev. Lett. 116 133903 | Anomalous Edge State in a Non-Hermitian Lattice
[3] | Kunst F K, Edvardsson E, Budich J C and Bergholtz E J 2018 Phys. Rev. Lett. 121 026808 | Biorthogonal Bulk-Boundary Correspondence in Non-Hermitian Systems
[4] | McDonald A, Pereg-Barnea T and Clerk A A 2018 Phys. Rev. X 8 041031 | Phase-Dependent Chiral Transport and Effective Non-Hermitian Dynamics in a Bosonic Kitaev-Majorana Chain
[5] | Borgnia D S, Kruchkov A J and Slager R J 2020 Phys. Rev. Lett. 124 056802 | Non-Hermitian Boundary Modes and Topology
[6] | Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[7] | Yao S, Song F and Wang Z 2018 Phys. Rev. Lett. 121 136802 | Non-Hermitian Chern Bands
[8] | Yokomizo K and Murakami S 2019 Phys. Rev. Lett. 123 066404 | Non-Bloch Band Theory of Non-Hermitian Systems
[9] | Yang Z S, Zhang K, Fang C and Hu J P 2020 Phys. Rev. Lett. 125 226402 | Non-Hermitian Bulk-Boundary Correspondence and Auxiliary Generalized Brillouin Zone Theory
[10] | Zhang K, Yang Z and Fang C 2020 Phys. Rev. Lett. 125 126402 | Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems
[11] | Martinze Alvarez V M, Barrios Vargas J E and Foa Torres L E F 2018 Phys. Rev. B 97 121401(R) | Non-Hermitian robust edge states in one dimension: Anomalous localization and eigenspace condensation at exceptional points
[12] | Zhang X Z and Gong J B 2020 Phys. Rev. B 101 045415 | Non-Hermitian Floquet topological phases: Exceptional points, coalescent edge modes, and the skin effect
[13] | Zeng Q B, Yang Y B and Xu Y 2020 Phys. Rev. B 101 020201(R) | Topological phases in non-Hermitian Aubry-André-Harper models
[14] | Okuma N, Kawabata K, Shiozaki K and Sato M 2020 Phys. Rev. Lett. 124 086801 | Topological Origin of Non-Hermitian Skin Effects
[15] | Wang X R, Guo C X and Kou S P 2020 Phys. Rev. B 101 121116(R) | Defective edge states and number-anomalous bulk-boundary correspondence in non-Hermitian topological systems
[16] | Lee C H and Thomale R 2019 Phys. Rev. B 99 201103(R) | Anatomy of skin modes and topology in non-Hermitian systems
[17] | Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 170401 | Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems
[18] | Helbig T, Hofmann T, Imhof S, Abdelghany M, Klessling T, Molenkamp L W, Lee C H, Szameit A, Greiter M and Thomale R 2020 Nat. Phys. 16 747 | Generalized bulk–boundary correspondence in non-Hermitian topolectrical circuits
[19] | Hofmann T, Helbig T, Schindler F, Salgo N, Brzezińska M, Greiter M, Kiessling T, Wolf D, Vollhardt A, Kabaši A, Lee C H, Bilušić A, Thomale R and Neupert T 2020 Phys. Rev. Res. 2 023265 | Reciprocal skin effect and its realization in a topolectrical circuit
[20] | Ghatak A, Brandenbourger M, van Wezel J and Coulais C 2020 Proc. Natl. Acad. Sci. USA 117 29561 | Observation of non-Hermitian topology and its bulk–edge correspondence in an active mechanical metamaterial
[21] | Xiao L, Deng T S, Wang K, Zhu G, Wang Z, Yi W and Xue P 2020 Nat. Phys. 16 761 | Non-Hermitian bulk–boundary correspondence in quantum dynamics
[22] | Weidemann S, Kremer M, Helbig T, Hofmann T, Stegmaier A, Greiter M, Thomale R and Szameit A 2020 Science 368 311 | Topological funneling of light
[23] | Kitagawa T, Rudner M S, Berg E and Demler E 2010 Phys. Rev. A 82 033429 | Exploring topological phases with quantum walks
[24] | Kitagawa T, Berg E, Rudner M and Demler E 2010 Phys. Rev. B 82 235114 | Topological characterization of periodically driven quantum systems
[25] | Cayssol J, Dora B, Simon F and Moessner R 2013 Phys. Status Solidi RRL 7 101 | Floquet topological insulators
[26] | Barkhofen S, Nitsche T, Elster F, Lorz L, Gábris A, Jex I and Silberhorn C 2017 Phys. Rev. A 96 033846 | Measuring topological invariants in disordered discrete-time quantum walks
[27] | Asbóth J K and Obuse H 2013 Phys. Rev. B 88 121406(R) | Bulk-boundary correspondence for chiral symmetric quantum walks
[28] | Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A and White A G 2010 Phys. Rev. Lett. 104 153602 | Discrete Single-Photon Quantum Walks with Tunable Decoherence
[29] | Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E and White A G 2012 Nat. Commun. 3 882 | Observation of topologically protected bound states in photonic quantum walks
[30] | Zeuner J M, Rechtsman M C, Plotnik Y, Lumer Y, Nolte S, Rudner M S, Segev M and Szameit A 2015 Phys. Rev. Lett. 115 040402 | Observation of a Topological Transition in the Bulk of a Non-Hermitian System
[31] | Zhan X, Xiao L, Bian Z, Wang K, Qiu X, Sanders B C, Yi W and Xue P 2017 Phys. Rev. Lett. 119 130501 | Detecting Topological Invariants in Nonunitary Discrete-Time Quantum Walks
[32] | Xiao L, Zhan X, Bian Z H, Wang K K, Zhang X, Wang X P, Li J, Mochizuki K, Kim D, Kawakami N, Yi W, Obuse H, Sanders B C and Xue P 2017 Nat. Phys. 13 1117 | Observation of topological edge states in parity–time-symmetric quantum walks
[33] | Chen C, Ding X, Qin J, He Y, Luo Y H, Chen M C, Liu C, Wang X L, Zhang W J, Li H, You L X, Wang Z, Wang D W, Sanders B C, Lu C Y and Pan J W 2018 Phys. Rev. Lett. 121 100502 | Observation of Topologically Protected Edge States in a Photonic Two-Dimensional Quantum Walk
[34] | Cardano F, Maffei M, Massa F, Piccirillo B, de Lisio C, De Filippis G, Cataudella V, Santamato E and Marrucci L 2016 Nat. Commun. 7 11439 | Statistical moments of quantum-walk dynamics reveal topological quantum transitions
[35] | Cardano F, Errico A D, Dauphin A, Maffei M, Piccirillo B, de Lisio C, De Filippis G, Santamato V C E, Marrucci L, Lewenstein M and Massignan P 2017 Nat. Commun. 8 15516 | Detection of Zak phases and topological invariants in a chiral quantum walk of twisted photons
[36] | Rudner M S, Lindner N H, Berg E and Levin M 2013 Phys. Rev. X 3 031005 | Anomalous Edge States and the Bulk-Edge Correspondence for Periodically Driven Two-Dimensional Systems
[37] | Zhou L W and Gong J B 2018 Phys. Rev. B 98 205417 | Non-Hermitian Floquet topological phases with arbitrarily many real-quasienergy edge states
[38] | Zhou L W and Pan J X 2019 Phys. Rev. A 100 053608 | Non-Hermitian Floquet topological phases in the double-kicked rotor
[39] | Xie D, Deng T S, Xiao T, Gou W, Chen T, Yi W and Yan B 2020 Phys. Rev. Lett. 124 050502 | Topological Quantum Walks in Momentum Space with a Bose-Einstein Condensate
[40] | Schreiber A, Gábris A, Rohde P P, Laiho K, Štefaňák M, Potoček V, Hamilton C, Jex I and Silberhorn C 2012 Science 336 55 | A 2D Quantum Walk Simulation of Two-Particle Dynamics
[41] | Kawabata K, Shiozaki K, Ueda M and Sato M 2019 Phys. Rev. X 9 041015 | Symmetry and Topology in Non-Hermitian Physics
[42] | Yao S, Yan Z and Wang Z 2017 Phys. Rev. B 96 195303 | Topological invariants of Floquet systems: General formulation, special properties, and Floquet topological defects
[43] | Bianco R and Resta R 2011 Phys. Rev. B 84 241106(R) | Mapping topological order in coordinate space
[44] | Caio M D, Möller G, Cooper N R and Bhaseen M J 2019 Nat. Phys. 15 257 | Topological marker currents in Chern insulators
[45] | Privitera L and Santoro G E 2016 Phys. Rev. B 93 241406(R) | Quantum annealing and nonequilibrium dynamics of Floquet Chern insulators
[46] | Pozo O, Repellin C and Grushin A G 2019 Phys. Rev. Lett. 123 247401 | Quantization in Chiral Higher Order Topological Insulators: Circular Dichroism and Local Chern Marker
[47] | Song F, Yao S and Wang Z 2019 Phys. Rev. Lett. 123 246801 | Non-Hermitian Topological Invariants in Real Space
[48] | Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Sanders B C, Yi W and Xue P 2019 Nat. Commun. 10 2293 | Observation of emergent momentum–time skyrmions in parity–time-symmetric non-unitary quench dynamics