[1] | Falcao E H and Wudl F 2007 J. Chem. Technol. Biotechnol. 82 524 | Carbon allotropes: beyond graphite and diamond
[2] | Zhang Q, Huang J Q, Qian W Z, Zhang Y Y and Wei F 2013 Small 9 1237 | The Road for Nanomaterials Industry: A Review of Carbon Nanotube Production, Post-Treatment, and Bulk Applications for Composites and Energy Storage
[3] | Zhang R S and Jiang J W 2019 Front. Phys. 14 13401 | The art of designing carbon allotropes
[4] | Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162 | C60: Buckminsterfullerene
[5] | Novoselov K S K S, Geim A K A K, Morozov S V S V, Jiang D, Zhang Y, Dubonos S V V, Grigorieva I V V and Firsov A A 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[6] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[7] | Iijima S 1991 Nature 354 56 | Helical microtubules of graphitic carbon
[8] | Li G, Li Y, Liu H, Guo Y, Li Y and Zhu D 2010 Chem. Commun. 46 3256 | Architecture of graphdiyne nanoscale films
[9] | Diederich F and Kivala M 2010 Adv. Mater. 22 803 | All-Carbon Scaffolds by Rational Design
[10] | Robertson J 2002 Mater. Sci. Eng. R 37 129 | Diamond-like amorphous carbon
[11] | Belenkov E A and Greshnyakov V A 2013 New Carbon Mater. 28 273 | Classification schemes for carbon phases and nanostructures
[12] | Tepliakov N V, Kundelev E V, Khavlyuk P D, Xiong Y, Leonov M Y, Zhu W, Baranov A V, Fedorov A V, Rogach A L and Rukhlenko I D 2019 ACS Nano 13 10737 | sp 2 –sp 3 -Hybridized Atomic Domains Determine Optical Features of Carbon Dots
[13] | Yuan Q, Lin C T and Chee K W A 2019 APL Mater. 7 030901 | All-carbon devices based on sp 2 -on-sp 3 configuration
[14] | Bianco A, Chen Y, Chen Y, Ghoshal D, Hurt R H, Kim Y A, Koratkar N, Meunier V and Terrones M 2018 Carbon 132 785 | A carbon science perspective in 2018: Current achievements and future challenges
[15] | Kozlov M E, Hirabayashi M, Nozaki K, Tokumoto M and Ihara H 1995 Appl. Phys. Lett. 66 1199 | Transformation of C 60 fullerenes into a superhard form of carbon at moderate pressure
[16] | Yamanaka S, Kini N S, Kubo A, Jida S and Kuramoto H 2008 J. Am. Chem. Soc. 130 4303 | Topochemical 3D Polymerization of C 60 under High Pressure at Elevated Temperatures
[17] | Yamanaka S, Kubo A, Inumaru K, Komaguchi K, Kini N S, Inoue T and Irifune T 2006 Phys. Rev. Lett. 96 076602 | Electron Conductive Three-Dimensional Polymer of Cuboidal
[18] | Iwasa Y, Arima T, Fleming R M, Siegrist T, Zhou O, Haddon R C, Rothberg L J, Lyons K B, Carter H L, Hebard A F, Tycko R, Dabbagh G, Krajewski J J, Thomas G A and Yagi T 1994 Science 264 1570 | New Phases of C60 Synthesized at High Pressure
[19] | Blank V D, Buga S G, Dubitsky G A, Serebryanaya N R, Popov M Y and Sundqvist B 1998 Carbon 36 319 | High-pressure polymerized phases of C 60
[20] | Álvarez-Murga M and Hodeau J L 2015 Carbon 82 381 | Structural phase transitions of C60 under high-pressure and high-temperature
[21] | Lin Y, Zhang L, Mao H K, Chow P, Xiao Y, Baldini M, Shu J and Mao W L 2011 Phys. Rev. Lett. 107 175504 | Amorphous Diamond: A High-Pressure Superhard Carbon Allotrope
[22] | Yao M, Xiao J, Fan X, Liu R and Liu B 2014 Appl. Phys. Lett. 104 021916 | Transparent, superhard amorphous carbon phase from compressing glassy carbon
[23] | Zhao Z, Wang E F, Yan H, Kono Y, Wen B, Bai L, Shi F, Zhang J, Kenney-Benson C, Park C, Wang Y and Shen G 2015 Nat. Commun. 6 6212 | Nanoarchitectured materials composed of fullerene-like spheroids and disordered graphene layers with tunable mechanical properties
[24] | Hu M, He J, Zhao Z, Strobel T A, Hu W, Yu D, Sun H, Liu L, Li Z, Ma M, Kono Y, Shu J, Mao H K, Fei Y, Shen G, Wang Y, Juhl S J, Huang J Y, Liu Z, Xu B and Tian Y 2017 Sci. Adv. 3 e1603213 | Compressed glassy carbon: An ultrastrong and elastic interpenetrating graphene network
[25] | Shibazaki Y, Kono Y and Shen G 2019 Sci. Rep. 9 7531 | Compressed glassy carbon maintaining graphite-like structure with linkage formation between graphene layers
[26] | Hu M, Zhang S, Liu B, Wu Y, Luo K, Li Z, Ma M, Yu D, Liu L, Gao Y, Zhao Z, Kono Y, Bai L, Shen G, Hu W, Zhang Y, Riedel R, Xu B, He J and Tian Y 2021 J. Mater. 7 177 |
[27] | Popov M, Kyotani M, Nemanich R J and Koga Y 2002 Phys. Rev. B 65 033408 | Superhard phase composed of single-wall carbon nanotubes
[28] | Khabashesku V N, Gu Z, Brinson B, Zimmerman J L, Margrave J L, Davydov V A, Kashevarova L S and Rakhmanina A V 2002 J. Phys. Chem. B 106 11155 | Polymerization of Single-Wall Carbon Nanotubes under High Pressures and High Temperatures
[29] | Wang Z, Zhao Y, Tait K, Liao X, Schiferl D, Zha C, Downs R T, Qian J, Zhu Y and Shen T 2004 Proc. Natl. Acad. Sci. USA 101 13699 | A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes
[30] | Kumar R S, Pravica M G, Cornelius A L, Nicol M F, Hu M Y and Chow P C 2007 Diamond Relat. Mater. 16 1250 | X-ray Raman scattering studies on C60 fullerenes and multi-walled carbon nanotubes under pressure
[31] | Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063 | CALYPSO: A method for crystal structure prediction
[32] | Zhang S, He J, Zhao Z, Yu D and Tian Y 2019 Chin. Phys. B 28 106104 | Discovery of superhard materials via CALYPSO methodology
[33] | Glass C W, Oganov A R and Hansen N 2006 Comput. Phys. Commun. 175 713 | USPEX—Evolutionary crystal structure prediction
[34] | Pickard C J and Needs R J 2011 J. Phys.: Condens. Matter 23 053201 | Ab initio random structure searching
[35] | Lee J, Lee I H and Lee J 2003 Phys. Rev. Lett. 91 080201 | Unbiased Global Optimization of Lennard-Jones Clusters for Using the Conformational Space Annealing Method
[36] | Liu J, Zhao T, Zhang S and Wang Q 2017 Nano Energy 38 263 | A new metallic carbon allotrope with high stability and potential for lithium ion battery anode material
[37] | Sung H J, Kim S, Lee I H and Chang K J 2017 NPG Asia Mater. 9 e361 | Semimetallic carbon allotrope with a topological nodal line in mixed sp2-sp3 bonding networks
[38] | Hu M, Ma M, Zhao Z, Yu D and He J 2016 AIP Adv. 6 055020 | Superhard sp 2 – sp 3 hybrid carbon allotropes with tunable electronic properties
[39] | Liu Y, Zhan G D, Wang Q, He D, Zhang J, Liang A, Moellendick T E, Zhao L and Li X 2019 Sci. Rep. 9 10215 | Hardness of Polycrystalline Wurtzite Boron Nitride (wBN) Compacts
[40] | Zhao Z, Xu B, Wang L M, Zhou X F, He J, Liu Z, Wang H T and Tian Y 2011 ACS Nano 5 7226 | Three Dimensional Carbon-Nanotube Polymers
[41] | Bucknum M J and Hoffmann R 1994 J. Am. Chem. Soc. 116 11456 | A Hypothetical Dense 3,4-Connected Carbon Net and Related B2C and CN2 Nets Built from 1,4-Cyclohexadienoid Units
[42] | Zhang S, Wang Q, Chen X and Jena P 2013 Proc. Natl. Acad. Sci. USA 110 18809 | Stable three-dimensional metallic carbon with interlocking hexagons
[43] | Liu Y, Jiang X, Fu J and Zhao J 2018 Carbon 126 601 | New metallic carbon: Three dimensionally carbon allotropes comprising ultrathin diamond nanostripes
[44] | Hu M, Zhao Z, Tian F, Oganov A R, Wang Q, Xiong M, Fan C, Wen B, He J, Yu D, Wang H T, Xu B and Tian Y 2013 Sci. Rep. 3 1331 | Compressed carbon nanotubes: A family of new multifunctional carbon allotropes
[45] | Pan Y, Hu M, Ma M, Li Z, Gao Y, Xiong M, Gao G, Zhao Z, Tian Y, Xu B and He J 2017 Carbon 115 584 | Multithreaded conductive carbon: 1D conduction in 3D carbon
[46] | Jiang X, Zhao J, Li Y L and Ahuja R 2013 Adv. Funct. Mater. 23 5846 | Tunable Assembly of sp 3 Cross-Linked 3D Graphene Monoliths: A First-Principles Prediction
[47] | 2012 Materials Studio Program, version 7.0 (Accelrys Inc.: San Diego, CA) |
[48] | Clark S J, Segall M D, Pickard C J, Hasnip P J, Probert M I J, Refson K and Payne M C 2005 Z. Kristallogr. - Cryst. Mater. 220 567 | First principles methods using CASTEP
[49] | Vanderbilt D 1990 Phys. Rev. B 41 7892 | Soft self-consistent pseudopotentials in a generalized eigenvalue formalism
[50] | Laasonen K, Car R, Lee C and Vanderbilt D 1991 Phys. Rev. B 43 6796 | Implementation of ultrasoft pseudopotentials in ab initio molecular dynamics
[51] | Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 | Self-interaction correction to density-functional approximations for many-electron systems
[52] | Ceperley D M and Alder B J 1980 Phys. Rev. Lett. 45 566 | Ground State of the Electron Gas by a Stochastic Method
[53] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[54] | Hinuma Y, Pizzi G, Kumagai Y, Oba F and Tanaka I 2017 Comput. Mater. Sci. 128 140 | Band structure diagram paths based on crystallography
[55] | Refson K, Tulip P R and Clark S J 2006 Phys. Rev. B 73 155114 | Variational density-functional perturbation theory for dielectrics and lattice dynamics
[56] | Liu H, Fan Q Y, Yang F, Yu X H, Zhang W and Yun S N 2020 Chin. Phys. B 29 106102 | t P40 carbon: A novel superhard carbon allotrope
[57] | Xie Q, Wang L, Li J, Li R and Chen X Q 2020 Chin. Phys. B 29 037306 | General principles to high-throughput constructing two-dimensional carbon allotropes
[58] | Gu Q, Xing D and Sun J 2019 Chin. Phys. Lett. 36 097401 | Superconducting Single-Layer T-Graphene and Novel Synthesis Routes
[59] | Ma Y M 2019 Chin. Phys. Lett. 36 090101 | Theoretical Proposal for a Planar Single-Layer Carbon That Shows a Potential in Superconductivity
[60] | Occelli F, Loubeyre P and LeToullec R 2003 Nat. Mater. 2 151 | Properties of diamond under hydrostatic pressures up to 140 GPa
[61] | Li Q, Ma Y, Oganov A R, Wang H, Wang H, Xu Y, Cui T, Mao H K and Zou G 2009 Phys. Rev. Lett. 102 175506 | Superhard Monoclinic Polymorph of Carbon
[62] | Wang J T, Chen C and Kawazoe Y 2011 Phys. Rev. Lett. 106 075501 | Low-Temperature Phase Transformation from Graphite to Orthorhombic Carbon
[63] | Zhao Z, Tian F, Dong X, Li Q, Wang Q, Wang H, Zhong X, Xu B, Yu D, He J, Wang H T, Ma Y and Tian Y 2012 J. Am. Chem. Soc. 134 12362 | Tetragonal Allotrope of Group 14 Elements
[64] | Zhao Z, Xu B, Zhou X F, Wang L M, Wen B, He J, Liu Z, Wang H T and Tian Y 2011 Phys. Rev. Lett. 107 215502 | Novel Superhard Carbon: C-Centered Orthorhombic
[65] | Li D, Bao K, Tian F, Zeng Z, He Z, Liu B and Cui T 2012 Phys. Chem. Chem. Phys. 14 4347 | Lowest enthalpy polymorph of cold-compressed graphite phase
[66] | Setyawan W and Curtarolo S 2010 Comput. Mater. Sci. 49 299 | High-throughput electronic band structure calculations: Challenges and tools
[67] | Mouhat F and Coudert F X 2014 Phys. Rev. B 90 224104 | Necessary and sufficient elastic stability conditions in various crystal systems
[68] | Born M, Huang K and Lax M 1955 Am. J. Phys. 23 474 | Dynamical Theory of Crystal Lattices
[69] | Hill R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[70] | Born M 1940 Proc. Cambridge Philos. Soc. 36 160 | On the stability of crystal lattices. I
[71] | Bosak A, Krisch M, Mohr M, Maultzsch J and Thomsen C 2007 Phys. Rev. B 75 153408 | Elasticity of single-crystalline graphite: Inelastic x-ray scattering study
[72] | Chen X Q, Niu H, Li D and Li Y 2011 Intermetallics 19 1275 | Modeling hardness of polycrystalline materials and bulk metallic glasses
[73] | Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater. 33 93 | Microscopic theory of hardness and design of novel superhard crystals
[74] | Solozhenko V L, Andrault D, Fiquet G, Mezouar M and Rubie D C 2001 Appl. Phys. Lett. 78 1385 | Synthesis of superhard cubic BC2N
[75] | Pugh S F 1954 Mag. J. Sci. 45 823 | XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals
[76] | Basic properties of elements, https://www.webelements.com/ |
[77] | Brazhkin V, Dubrovinskaia N, Nicol M, Novikov N, Riedel R, Solozhenko V and Zhao Y 2004 Nat. Mater. 3 576 | What does 'harder than diamond' mean?
[78] | Zhao Z, Luo K, Liu B, Hu W, Sun L, He J, Yu D, Tian Y, Xu B and Liu Z 2019 Novel $sp^2$–$sp^3$ Hybrid Crystalline Carbon and Its Preparation Process Patent application: CN 201910717722.1 (2019-08-05), US 16/831, 327 (2020-03-26), EP 20165872.1 (2020-03-26), JP 2020–072447 (2020-04-14) |
| Zhao Z, Luo K and Tian Y 2019 the 9th International Forum on Advanced Materials (Wuhan, China 24–26 September 2019) pp 78–85 |
[79] | Bundy F P, Hall H T, Strong H M and Wentorf R H 1955 Nature 176 51 | Man-Made Diamonds
[80] | Seal M 1960 Nature 185 522 | Graphitization of Diamond
[81] | Bundy F P and Kasper J S 1967 J. Chem. Phys. 46 3437 | Hexagonal Diamond—A New Form of Carbon