[1] | Shinada T, Okamoto S, Kobayashi T and Ohdomari I 2005 Nature 437 1128 | Enhancing semiconductor device performance using ordered dopant arrays
[2] | Shinada T, Ishikawa A, Hinoshita C, Koh M and Ohdomari I 2000 Appl. Surf. Sci. 162 499 | Flat-band voltage control of a back-gate MOSFET by single ion implantation
[3] | Dzurak A, Hollenberg L, Jamieson D, Stanley F, Yang C, Buhler T, Chan V, Reilly D, Wellard C and Hamilton A 2003 arXiv:cond-mat/0306265 | Charge-based silicon quantum computer architectures using controlled single-ion implantation
[4] | Jamieson D N, Yang C, Hopf T, Hearne S M, Pakes C I, Prawer S, Mitic M, Gauja E, Andresen S E, Hudson F E, Dzurak A S and Clark R G 2005 Appl. Phys. Lett. 86 202101 | Controlled shallow single-ion implantation in silicon using an active substrate for sub-20‐keV ions
[5] | Fuechsle M, Miwa J A, Mahapatra S, Ryu H, Lee S, Warschkow O, Hollenberg L C L, Klimeck G and Simmons M Y 2012 Nat. Nanotechnol. 7 242 | A single-atom transistor
[6] | Pok F J R W, Reusch T, Butcher M J, Goh K, Oberbeck L, Scappucci G, Hamilton A R and Simmons M Y 2007 Small 3 563 | Realization of Atomically Controlled Dopant Devices in Silicon
[7] | Ruess F J, Oberbeck L, Simmons M Y, Goh K E J, Hamilton A R, Hallam T, Schofield S R, Curson N J and Clark R G 2004 Nano Lett. 4 1969 | Toward Atomic-Scale Device Fabrication in Silicon Using Scanning Probe Microscopy
[8] | Tettamanzi G C, Hile S J, House M G, Fuechsle M, Rogge S and Simmons M Y 2017 ACS Nano 11 2444 | Probing the Quantum States of a Single Atom Transistor at Microwave Frequencies
[9] | Ho J C, Yerushalmi R, Jacobson Z A, Fan Z, Alley R L and Javey A 2008 Nat. Mater. 7 62 | Controlled nanoscale doping of semiconductors via molecular monolayers
[10] | Ho J C, Yerushalmi R, Smith G, Majhi P, Bennett J, Halim J, Faifer V N and Javey A 2009 Nano Lett. 9 725 | Wafer-Scale, Sub-5 nm Junction Formation by Monolayer Doping and Conventional Spike Annealing
[11] | Gao X, Kolevatov I, Chen K, Guan B, Mesli A, Monakhov E and Dan Y 2020 ACS Appl. Electron. Mater. 2 268 | Full Activation of Boron in Silicon Doped by Self-Assembled Molecular Monolayers
[12] | Gao X, Guan B, Mesli A, Chen K and Dan Y 2018 Nat. Commun. 9 118 | Deep level transient spectroscopic investigation of phosphorus-doped silicon by self-assembled molecular monolayers
[13] | van Druenen M, Collins G, Glynn C, O'Dwyer C and Holmes J D 2018 ACS Appl. Mater. & Interfaces 10 2191 | Functionalization of SiO 2 Surfaces for Si Monolayer Doping with Minimal Carbon Contamination
[14] | Thissen P, Cho K and Longo R C 2017 ACS Appl. Mater. & Interfaces 9 1922 | Nanopatterning of Group V Elements for Tailoring the Electronic Properties of Semiconductors by Monolayer Doping
[15] | Zhi K, Zhang C, Wei H, Wen H and Dan Y 2020 Chem. Phys. 531 110658 | Thermal pyrolysis investigation of self-assembled molecular monolayer for defect-free doping in silicon
[16] | Ye L, Pujari S P, Zuilhof H, Kudernac T, de Jong M P, van der Wiel W G and Huskens J 2015 ACS Appl. Mater. & Interfaces 7 3231 | Controlling the Dopant Dose in Silicon by Mixed-Monolayer Doping
[17] | Guan B, Siampour H, Fan Z, Wang S, Kong X Y, Mesli A, Zhang J and Dan Y 2015 Sci. Rep. 5 12641 | Nanoscale Nitrogen Doping in Silicon by Self-Assembled Monolayers
[18] | Ye L, González-Campo A, Núñez R, de Jong M P, Kudernac T, van der Wiel W G and Huskens J 2015 ACS Appl. Mater. & Interfaces 7 27357 | Boosting the Boron Dopant Level in Monolayer Doping by Carboranes
[19] | Fu J, Chen K, Chang S, Zhi K, Gao X, Wei H and Dan Y 2019 AIP Adv. 9 125219 | Dopant activation and photoresponses of boron-doped silicon by self-assembled molecular monolayers
[20] | Longo R C, Mattson E C, Vega A, Cabrera W, Cho K, Chabal Y J and Thissen P 2016 Chem. Mater. 28 1975 | Mechanism of Arsenic Monolayer Doping of Oxide-Free Si(111)
[21] | O'Connell J, Verni G A, Gangnaik A, Shayesteh M, Long B, Georgiev Y M, Petkov N, McGlacken G P, Morris M A, Duffy R and Holmes J D 2015 ACS Appl. Mater. & Interfaces 7 15514 | Organo-arsenic Molecular Layers on Silicon for High-Density Doping
[22] | Kennedy N, Garvey S, Maccioni B, Eaton L, Nolan M, Duffy R, Meaney F, Kennedy M, Holmes J D and Long B 2020 Langmuir 36 9993 | Monolayer Doping of Germanium with Arsenic: A New Chemical Route to Achieve Optimal Dopant Activation
[23] | Alphazan T, Álvarez A D, Martin F, Grampeix H, Enyedi V, Martinez E, Rochat N, Veillerot M, Dewitte M, Nys J P, Berthe M, Stiévenard D, Thieuleux C and Grandidier B 2017 ACS Appl. Mater. & Interfaces 9 20179 | Shallow Heavily Doped n++ Germanium by Organo-Antimony Monolayer Doping
[24] | Mattson E C and Chabal Y J 2018 J. Phys. Chem. C 122 8414 | Understanding Thermal Evolution and Monolayer Doping of Sulfur-Passivated GaAs(100)
[25] | Ho J C, Ford A C, Chueh Y L, Leu P W, Ergen O, Takei K, Smith G, Majhi P, Bennett J and Javey A 2009 Appl. Phys. Lett. 95 072108 | Nanoscale doping of InAs via sulfur monolayers
[26] | Zhang C, Peng M, Hu W and Dan Y 2020 ACS Appl. Electron. Mater. 2 275 | Toward Scalable Fabrication of Atomic Wires in Silicon by Nanopatterning Self-Assembled Molecular Monolayers
[27] | Pelleg J and Ditchek B M 1993 J. Appl. Phys. 73 699 | Diffusion of P in a novel three‐dimensional device based on Si–TaSi 2 eutectic