[1] | Fallahi A, Yahaghi A, Benedickter H R et al. 2010 IEEE Trans. Antennas Propag. 58 4051 | Thin Wideband Radar Absorbers
[2] | Kurihara H, Hirai Y, Takizawa K et al. 2005 IEICE Trans. Electron. 125 2350 | An Improvement of Communication Environment for ETC System by Using Transparent EM Wave Absorber
[3] | Okano Y, Ogino S and Ishikawa K 2012 IEEE Trans. Microwave Theory Tech. 60 2456 | Development of Optically Transparent Ultrathin Microwave Absorber for Ultrahigh-Frequency RF Identification System
[4] | Thomassin J, Huynen I, Jerome R et al. 2010 Polymer 51 115 | Functionalized polypropylenes as efficient dispersing agents for carbon nanotubes in a polypropylene matrix; application to electromagnetic interference (EMI) absorber materials
[5] | Liu T, Cao X, Gao J et al. 2013 IEEE Trans. Antennas Propag. 61 1479 | RCS Reduction of Waveguide Slot Antenna With Metamaterial Absorber
[6] | Salisbury W W 1952 US Patent 2599944 |
[7] | Meshram M R, Agrawal N K, Sinha B et al. 2004 J. Magn. Magn. Mater. 271 207 | Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber
[8] | Park M J and Kim S S 2000 IEEE Trans. Magn. 36 3272 | Wide bandwidth pyramidal absorbers of granular ferrite and carbonyl iron powders
[9] | Smith D R, Padilla W J, Vier D C et al. 2000 Phys. Rev. Lett. 84 4184 | Composite Medium with Simultaneously Negative Permeability and Permittivity
[10] | Chen H, Wu B, Zhang B et al. 2007 Phys. Rev. Lett. 99 63903 | Electromagnetic Wave Interactions with a Metamaterial Cloak
[11] | Zhang C, Yang J, Yuan W et al. 2017 J. Phys. D 50 444002 | An ultralight and thin metasurface for radar-infrared bi-stealth applications
[12] | Yan M Y, Xu B J, Sun Z C et al. 2020 Chin. Phys. Lett. 37 067801 | Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure
[13] | Xie S H, Fang X S, Li P Q et al. 2020 Chin. Phys. Lett. 37 054301 | Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks
[14] | Han M K, Yin X W, Wu H et al. 2016 ACS Appl. Mater. & Interfaces 8 21011 | Ti 3 C 2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band
[15] | Xie Y M, Liu C Y, Ding Z J et al. 2016 Chin. Phys. Lett. 33 094208 | Optimization Design of Electromagnetic Nihility Nanoparticles
[16] | Hu J G, Xie W Q, Chen J X et al. 2020 Opt. Express 28 22095 | Strong hyperbolic-magnetic polaritons coupling in an hBN/Ag-grating heterostructure
[17] | Nizamani B, Salam S, Jafry A A A et al. 2019 Chin. Phys. Lett. 36 074203 | Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber
[18] | Zhou K, Cheng Q, Song J L et al. 2019 Opt. Lett. 44 3430 | Highly efficient narrow-band absorption of a graphene-based Fabry–Perot structure at telecommunication wavelengths
[19] | Zhang C, Yang J, Yang L X et al. 2020 Nanophotonics 9 2771 | Convolution operations on time-domain digital coding metasurface for beam manipulations of harmonics
[20] | Hu J G, Liu W, Xie W Q et al. 2019 Opt. Lett. 44 5642 | Strong coupling of optical interface modes in a 1D topological photonic crystal heterostructure/Ag hybrid system
[21] | Zhang C, Yang J, Cao W K et al. 2019 Photon. Res. 7 478 | Transparently curved metamaterial with broadband millimeter wave absorption
[22] | Sun J B, Liu L Y, Dong G Y et al. 2011 Opt. Express 19 21155 | An extremely broad band metamaterial absorber based on destructive interference
[23] | Zhang C, Cheng Q, Yang J et al. 2017 Appl. Phys. Lett. 110 143511 | Broadband metamaterial for optical transparency and microwave absorption
[24] | Sheokand H, Ghosh S K, Singh G et al. 2017 J. Appl. Phys. 122 105105 | Transparent broadband metamaterial absorber based on resistive films
[25] | Xiong H, Hong J S, Luo C M et al. 2013 J. Appl. Phys. 114 064109 | An ultrathin and broadband metamaterial absorber using multi-layer structures
[26] | Shui W C, Li J M, Wang H et al. 2020 Adv. Opt. Mater. 8 2001120 | Ti 3 C 2 T x MXene Sponge Composite as Broadband Terahertz Absorber
[27] | Hu J G, Qing Y M, Yang S Y et al. 2017 J. Opt. Soc. Am. B 34 861 | Tailoring total absorption in a graphene monolayer covered subwavelength multilayer dielectric grating structure at near-infrared frequencies
[28] | Arik K, Abdollahramezani S, Farajollahi S et al. 2016 Opt. Commun. 381 309 | Design of mid-infrared ultra-wideband metallic absorber based on circuit theory
[29] | Liu P W and Lan T 2017 Appl. Opt. 56 4201 | Wide-angle, polarization-insensitive, and broadband metamaterial absorber based on multilayered metal–dielectric structures
[30] | Langley R J and Parker E A 1982 Electron. Lett. 18 294 | Equivalent circuit model for arrays of square loops
[31] | Chung Y C, Lee K W, Hong I P et al. 2011 IEICE Electron. Express 8 89 | Simple prediction of FSS radome transmission characteristics using an FSS equivalent circuit model
[32] | Zhao J, Zhang C, Cheng Q et al. 2018 Appl. Phys. Lett. 112 73504 | An optically transparent metasurface for broadband microwave antireflection