Suppressed Thermal Conductivity in Polycrystalline Gold Nanofilm: The Effect of Grain Boundary and Substrate

Funds: Supported by the National Natural Science Foundation of China (Grant Nos. 51676121 and 12004242).
  • Received Date: October 05, 2020
  • Published Date: January 31, 2021
  • We investigate the electrical conductivity and thermal conductivity of polycrystalline gold nanofilms, with thicknesses ranging from 40.5 nm to 115.8 nm, and identify a thickness-dependent electrical conductivity, which can be explained via the Mayadas and Shatzkes (MS) theory. At the same time, a suppressed thermal conductivity is observed, as compared to that found in the bulk material, together with a weak thickness effect. We compare the thermal conductivity of suspended and supported gold films, finding that the supporting substrate can effectively suppress the in-plane thermal conductivity of the polycrystalline gold nanofilms. Our results indicate that grain boundary scattering and substrate scattering can affect electron and phonon transport in polycrystalline metallic systems.
  • Article Text

  • [1]
    Waldrop M M 2016 Nature 530 144 doi: 10.1038/530144a

    CrossRef Google Scholar

    [2]
    Franklin A D 2015 Science 349 aab2750 doi: 10.1126/science.aab2750

    CrossRef Google Scholar

    [3]
    Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873 doi: 10.1002/adfm.201903873

    CrossRef Google Scholar

    [4]
    Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 2070048 doi: 10.1002/adfm.202070048

    CrossRef Google Scholar

    [5]
    Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718 doi: 10.1002/adfm.201906718

    CrossRef Google Scholar

    [6]
    Avery A D, Mason S J, Bassett D, Wesenberg D and Zink B L 2015 Phys. Rev. B 92 214410 doi: 10.1103/PhysRevB.92.214410

    CrossRef Google Scholar

    [7]
    Zhang X, Zhang Q, Cao B, Fujii M, Takahashi K and Ikuta T 2006 Chin. Phys. Lett. 23 936 doi: 10.1088/0256-307X/23/4/048

    CrossRef Google Scholar

    [8]
    Zhang X, Xie H, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Appl. Phys. Lett. 86 171912 doi: 10.1063/1.1921350

    CrossRef Google Scholar

    [9]
    Yao M, Zebarjadi M and Opeil C P 2017 J. Appl. Phys. 122 135111 doi: 10.1063/1.4997034

    CrossRef Google Scholar

    [10]
    Ou M N, Yang T J, Harutyunyan S R, Chen Y Y, Chen C D and Lai S J 2008 Appl. Phys. Lett. 92 063101 doi: 10.1063/1.2839572

    CrossRef Google Scholar

    [11]
    He G, Lu H, Dong X, Zhang Y, Liu J, Xie C and Zhao Z 2018 RSC Adv. 8 24893 doi: 10.1039/C8RA03280G

    CrossRef Google Scholar

    [12]
    Feng B, Li Z and Zhang X 2009 Thin Solid Films 517 2803 doi: 10.1016/j.tsf.2008.10.116

    CrossRef Google Scholar

    [13]
    Wang H, Liu J, Zhang X and Takahashi K 2013 Int. J. Heat Mass Transfer 66 585 doi: 10.1016/j.ijheatmasstransfer.2013.07.066

    CrossRef Google Scholar

    [14]
    Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 J. Phys.: Condens. Matter 18 7937 doi: 10.1088/0953-8984/18/34/007

    CrossRef Google Scholar

    [15]
    Wang H, Liu J, Zhang X, Guo Z and Takahashi K 2011 Heat Mass Transfer 47 893 doi: 10.1007/s00231-011-0825-5

    CrossRef Google Scholar

    [16]
    Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 Phys. Rev. B 74 134109 doi: 10.1103/PhysRevB.74.134109

    CrossRef Google Scholar

    [17]
    Sawtelle S D and Reed M A 2019 Phys. Rev. B 99 054304 doi: 10.1103/PhysRevB.99.054304

    CrossRef Google Scholar

    [18]
    Ma W, Wang H, Zhang X and Wang W 2010 J. Appl. Phys. 108 064308 doi: 10.1063/1.3482006

    CrossRef Google Scholar

    [19]
    Wang L, Saira O, Golubev D and Pekola J 2019 Phys. Rev. Appl. 12 024051 doi: 10.1103/PhysRevApplied.12.024051

    CrossRef Google Scholar

    [20]
    Mason S J, Wesenberg D J, Hojem A, Manno M, Leighton C and Zink B L 2020 Phys. Rev. Mater. 4 065003 doi: 10.1103/PhysRevMaterials.4.065003

    CrossRef Google Scholar

    [21]
    Lin H, Xu S, Li C, Dong H and Wang X 2013 Nanoscale 5 4652 doi: 10.1039/c3nr00729d

    CrossRef Google Scholar

    [22]
    Li X, Yan Y, Dong L, Guo J, Aiyiti A, Xu X, Li B 2017 J. Phys. D 50 104002 doi: 10.1088/1361-6463/aa59a8

    CrossRef Google Scholar

    [23]
    Monshi A, Foroughi M R and Monshi M R 2012 World J. Nano Sci. Eng. 02 154 doi: 10.4236/wjnse.2012.23020

    CrossRef Google Scholar

    [24]
    Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T, Hong B H, Loh K P, Donadio D and Li B O B 2014 Nat. Commun. 5 3689 doi: 10.1038/ncomms4689

    CrossRef Google Scholar

    [25]
    Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Transfer 125 881 doi: 10.1115/1.1597619

    CrossRef Google Scholar

    [26]
    Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502 doi: 10.1103/PhysRevLett.87.215502

    CrossRef Google Scholar

    [27]
    Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727 doi: 10.1039/C7NR07522G

    CrossRef Google Scholar

    [28]
    Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500 doi: 10.1093/nsr/nwy004

    CrossRef Google Scholar

    [29]
    Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452 doi: 10.1016/j.scib.2018.02.022

    CrossRef Google Scholar

    [30]
    Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138 doi: 10.1039/C9NR08803B

    CrossRef Google Scholar

    [31]
    Dong L, Xi Q, Zhou J, Xu X, Li B 2020 Phys. Rev. Appl. 13 034019 doi: 10.1103/PhysRevApplied.13.034019

    CrossRef Google Scholar

    [32]
    Dong L, Xu X and Li B 2018 Appl. Phys. Lett. 112 221904 doi: 10.1063/1.5031216

    CrossRef Google Scholar

    [33]
    Zheng P and Gall D 2017 J. Appl. Phys. 122 135301 doi: 10.1063/1.5004118

    CrossRef Google Scholar

    [34]
    Mayadas A F and Shatzkes M 1970 Phys. Rev. B 1 1382 doi: 10.1103/PhysRevB.1.1382

    CrossRef Google Scholar

    [35]
    Tong Z, Li S, Ruan X and Bao H 2019 Phys. Rev. B 100 144306 doi: 10.1103/PhysRevB.100.144306

    CrossRef Google Scholar

    [36]
    Li S, Tong Z, Zhang X and Bao H 2020 Phys. Rev. B 102 174306 doi: 10.1103/PhysRevB.102.174306

    CrossRef Google Scholar

    [37]
    Ma W and Zhang X 2013 Int. J. Heat Mass Transfer 58 639 doi: 10.1016/j.ijheatmasstransfer.2012.11.025

    CrossRef Google Scholar

    [38]
    Stojanovic N, Maithripala D H S, Berg J M and Holtz M 2010 Phys. Rev. B 82 075418 doi: 10.1103/PhysRevB.82.075418

    CrossRef Google Scholar

    [39]
    Van Attekum P M T M, Woerlee P H, Verkade G C and Hoeben A A M 1984 Phys. Rev. B 29 645 doi: 10.1103/PhysRevB.29.645

    CrossRef Google Scholar

    [40]
    Schneider M A, Wenderoth M, Heinrich A J, Rosentreter M A and Ulbrich R G 1996 Appl. Phys. Lett. 69 1327 doi: 10.1063/1.117583

    CrossRef Google Scholar

    [41]
    Zhao Y, Fitzgerald M L, Tao Y, Pan Z, Sauti G, Xu D, Xu Y Q and Li D 2020 Nano Lett. 20 7389 doi: 10.1021/acs.nanolett.0c02014

    CrossRef Google Scholar

    [42]
    Cheng Z, Liu L, Xu S, Lu M and Wang X 2015 Sci. Rep. 5 10718 doi: 10.1038/srep10718

    CrossRef Google Scholar

    [43]
    Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213 doi: 10.1126/science.1184014

    CrossRef Google Scholar

    [44]
    Jang W, Chen Z, Bao W, Lau C N and Dames C 2010 Nano Lett. 10 3909 doi: 10.1021/nl101613u

    CrossRef Google Scholar

Catalog

    Article views (523) PDF downloads (366) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return