[1] | Waldrop M M 2016 Nature 530 144 | The chips are down for Moore’s law
[2] | Franklin A D 2015 Science 349 aab2750 | Nanomaterials in transistors: From high-performance to thin-film applications
[3] | Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M, Chen K Q 2020 Adv. Funct. Mater. 30 1903873 | Nanoscale Organic Thermoelectric Materials: Measurement, Theoretical Models, and Optimization Strategies
[4] | Zhou W X, Cheng Y, Chen K Q, Xie G, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 2070048 | Thermal Conductivity: Thermal Conductivity of Amorphous Materials (Adv. Funct. Mater. 8/2020)
[5] | Hussein M I, Tsai C N and Honarvar H 2020 Adv. Funct. Mater. 30 1906718 | Thermal Conductivity Reduction in a Nanophononic Metamaterial versus a Nanophononic Crystal: A Review and Comparative Analysis
[6] | Avery A D, Mason S J, Bassett D, Wesenberg D and Zink B L 2015 Phys. Rev. B 92 214410 | Thermal and electrical conductivity of approximately 100-nm permalloy, Ni, Co, Al, and Cu films and examination of the Wiedemann-Franz Law
[7] | Zhang X, Zhang Q, Cao B, Fujii M, Takahashi K and Ikuta T 2006 Chin. Phys. Lett. 23 936 | Experimental Studies on Thermal and Electrical Properties of Platinum Nanofilms
[8] | Zhang X, Xie H, Fujii M, Ago H, Takahashi K, Ikuta T, Abe H and Shimizu T 2005 Appl. Phys. Lett. 86 171912 | Thermal and electrical conductivity of a suspended platinum nanofilm
[9] | Yao M, Zebarjadi M and Opeil C P 2017 J. Appl. Phys. 122 135111 | Experimental determination of phonon thermal conductivity and Lorenz ratio of single crystal metals: Al, Cu, and Zn
[10] | Ou M N, Yang T J, Harutyunyan S R, Chen Y Y, Chen C D and Lai S J 2008 Appl. Phys. Lett. 92 063101 | Electrical and thermal transport in single nickel nanowire
[11] | He G, Lu H, Dong X, Zhang Y, Liu J, Xie C and Zhao Z 2018 RSC Adv. 8 24893 | Electrical and thermal properties of silver nanowire fabricated on a flexible substrate by two-beam laser direct writing for designing a thermometer
[12] | Feng B, Li Z and Zhang X 2009 Thin Solid Films 517 2803 | Prediction of size effect on thermal conductivity of nanoscale metallic films
[13] | Wang H, Liu J, Zhang X and Takahashi K 2013 Int. J. Heat Mass Transfer 66 585 | Breakdown of Wiedemann–Franz law in individual suspended polycrystalline gold nanofilms down to 3K
[14] | Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 J. Phys.: Condens. Matter 18 7937 | Size effects on the thermal conductivity of polycrystalline platinum nanofilms
[15] | Wang H, Liu J, Zhang X, Guo Z and Takahashi K 2011 Heat Mass Transfer 47 893 | Experimental study on the influences of grain boundary scattering on the charge and heat transport in gold and platinum nanofilms
[16] | Zhang Q, Cao B, Zhang X, Fujii M and Takahashi K 2006 Phys. Rev. B 74 134109 | Influence of grain boundary scattering on the electrical and thermal conductivities of polycrystalline gold nanofilms
[17] | Sawtelle S D and Reed M A 2019 Phys. Rev. B 99 054304 | Temperature-dependent thermal conductivity and suppressed Lorenz number in ultrathin gold nanowires
[18] | Ma W, Wang H, Zhang X and Wang W 2010 J. Appl. Phys. 108 064308 | Experiment study of the size effects on electron-phonon relaxation and electrical resistivity of polycrystalline thin gold films
[19] | Wang L, Saira O, Golubev D and Pekola J 2019 Phys. Rev. Appl. 12 024051 | Crossover between Electron-Phonon and Boundary-Resistance Limits to Thermal Relaxation in Copper Films
[20] | Mason S J, Wesenberg D J, Hojem A, Manno M, Leighton C and Zink B L 2020 Phys. Rev. Mater. 4 065003 | Violation of the Wiedemann-Franz law through reduction of thermal conductivity in gold thin films
[21] | Lin H, Xu S, Li C, Dong H and Wang X 2013 Nanoscale 5 4652 | Thermal and electrical conduction in 6.4 nm thin gold films
[22] | Li X, Yan Y, Dong L, Guo J, Aiyiti A, Xu X, Li B 2017 J. Phys. D 50 104002 | Thermal conduction across a boron nitride and SiO 2 interface
[23] | Monshi A, Foroughi M R and Monshi M R 2012 World J. Nano Sci. Eng. 02 154 | Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD
[24] | Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Bui C T, Xie R, Thong J T, Hong B H, Loh K P, Donadio D and Li B O B 2014 Nat. Commun. 5 3689 | Length-dependent thermal conductivity in suspended single-layer graphene
[25] | Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Transfer 125 881 | Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
[26] | Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502 | Thermal Transport Measurements of Individual Multiwalled Nanotubes
[27] | Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727 | Thermal conductivity of suspended few-layer MoS 2
[28] | Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500 | Dimensional crossover of heat conduction in amorphous polyimide nanofibers
[29] | Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452 | Measuring the thermal conductivity and interfacial thermal resistance of suspended MoS 2 using electron beam self-heating technique
[30] | Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138 | Thermal conductivity of V 2 O 5 nanowires and their contact thermal conductance
[31] | Dong L, Xi Q, Zhou J, Xu X, Li B 2020 Phys. Rev. Appl. 13 034019 | Phonon Renormalization Induced by Electric Field in Ferroelectric Poly(Vinylidene Fluoride–Trifluoroethylene) Nanofibers
[32] | Dong L, Xu X and Li B 2018 Appl. Phys. Lett. 112 221904 | High thermal conductivity and superior thermal stability of amorphous PMDA/ODA nanofiber
[33] | Zheng P and Gall D 2017 J. Appl. Phys. 122 135301 | The anisotropic size effect of the electrical resistivity of metal thin films: Tungsten
[34] | Mayadas A F and Shatzkes M 1970 Phys. Rev. B 1 1382 | Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces
[35] | Tong Z, Li S, Ruan X and Bao H 2019 Phys. Rev. B 100 144306 | Comprehensive first-principles analysis of phonon thermal conductivity and electron-phonon coupling in different metals
[36] | Li S, Tong Z, Zhang X and Bao H 2020 Phys. Rev. B 102 174306 | Thermal conductivity and Lorenz ratio of metals at intermediate temperatures with mode-level first-principles analysis
[37] | Ma W and Zhang X 2013 Int. J. Heat Mass Transfer 58 639 | Study of the thermal, electrical and thermoelectric properties of metallic nanofilms
[38] | Stojanovic N, Maithripala D H S, Berg J M and Holtz M 2010 Phys. Rev. B 82 075418 | Thermal conductivity in metallic nanostructures at high temperature: Electrons, phonons, and the Wiedemann-Franz law
[39] | Van Attekum P M T M, Woerlee P H, Verkade G C and Hoeben A A M 1984 Phys. Rev. B 29 645 | Influence of grain boundaries and surface Debye temperature on the electrical resistance of thin gold films
[40] | Schneider M A, Wenderoth M, Heinrich A J, Rosentreter M A and Ulbrich R G 1996 Appl. Phys. Lett. 69 1327 | Current transport through single grain boundaries: A scanning tunneling potentiometry study
[41] | Zhao Y, Fitzgerald M L, Tao Y, Pan Z, Sauti G, Xu D, Xu Y Q and Li D 2020 Nano Lett. 20 7389 | Electrical and Thermal Transport through Silver Nanowires and Their Contacts: Effects of Elastic Stiffening
[42] | Cheng Z, Liu L, Xu S, Lu M and Wang X 2015 Sci. Rep. 5 10718 | Temperature Dependence of Electrical and Thermal Conduction in Single Silver Nanowire
[43] | Seol J H, Jo I, Moore A L, Lindsay L, Aitken Z H, Pettes M T, Li X, Yao Z, Huang R, Broido D, Mingo N, Ruoff R S and Shi L 2010 Science 328 213 | Two-Dimensional Phonon Transport in Supported Graphene
[44] | Jang W, Chen Z, Bao W, Lau C N and Dames C 2010 Nano Lett. 10 3909 | Thickness-Dependent Thermal Conductivity of Encased Graphene and Ultrathin Graphite