Self-Similarity Breaking: Anomalous Nonequilibrium Finite-Size Scaling and Finite-Time Scaling

Funds: Supported by the National Natural Science Foundation of China (Grant No. 11575297).
  • Received Date: August 08, 2020
  • Published Date: January 31, 2021
  • Symmetry breaking plays a pivotal role in modern physics. Although self-similarity is also a symmetry, and appears ubiquitously in nature, a fundamental question arises as to whether self-similarity breaking makes sense or not. Here, by identifying an important type of critical fluctuation, dubbed ‘phases fluctuations’, and comparing the numerical results for those with self-similarity and those lacking self-similarity with respect to phases fluctuations, we show that self-similarity can indeed be broken, with significant consequences, at least in nonequilibrium situations. We find that the breaking of self-similarity results in new critical exponents, giving rise to a violation of the well-known finite-size scaling, or the less well-known finite-time scaling, and different leading exponents in either the ordered or the disordered phases of the paradigmatic Ising model on two- or three-dimensional finite lattices, when subject to the simplest nonequilibrium driving of linear heating or cooling through its critical point. This is in stark contrast to identical exponents and different amplitudes in usual critical phenomena. Our results demonstrate how surprising driven nonequilibrium critical phenomena can be. The application of this theory to other classical and quantum phase transitions is also anticipated.
  • Article Text

  • [1]
    Mandelbrot B B 1983 The Fractal Geometry of Nature New York: Freeman

    Google Scholar

    [2]
    Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium Cambridge: Cambridge University

    Google Scholar

    [3]
    Fisher M E 1982 Scaling, Universality and Renormalization Group Theory, Lecture notes presented at the “Advanced Course on Critical Phenomena” The Merensky Institute of Physics, University of Stellenbosch, South Africa

    Google Scholar

    [4]
    Ma S K 1976 Modern Theory of Critical Phenomena Canada: W. A. Benjamin, Inc.

    Google Scholar

    [5]
    Pelissetto A and Vicari E 2002 Phys. Rep. 368 549 doi: 10.1016/S0370-15730200219-3

    CrossRef Google Scholar

    [6]
    Kogut J B 1979 Rev. Mod. Phys. 51 659 doi: 10.1103/RevModPhys.51.659

    CrossRef Google Scholar

    [7]
    Fisher M E and Barber M N 1972 Phys. Rev. Lett. 28 1516 doi: 10.1103/PhysRevLett.28.1516

    CrossRef Google Scholar

    [8]
    Barber M N 1983 Finite-Size Scaling in Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J New York: Academic vol 8

    Google Scholar

    [9]
    Cardy J 1988 Finite Size Scaling Amsterdam: North-Holland

    Google Scholar

    [10]
    Privman V 1990 Finite Size Scaling and Numerical Simulations of Statistical Systems Singapore: World Scientific

    Google Scholar

    [11]
    Brézin E 1982 J. Phys. France 43 15 doi: 10.1051/jphys:0198200430101500

    CrossRef Google Scholar

    [12]
    Brézin E and Zinn-Justin J 1985 Nucl. Phys. B 257 867 doi: 10.1016/0550-32138590379-7

    CrossRef Google Scholar

    [13]
    Gasparini F M, Kimball M O, Mooney K P and Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009 doi: 10.1103/RevModPhys.80.1009

    CrossRef Google Scholar

    [14]
    Landau D P and Binder K 2005 A Guide to Monte Carlo Simulations in Statistical Physics 2nd edn Cambridge: Cambridge University

    Google Scholar

    [15]
    Flores-Sola E, Berche B, Kenna R and Weigel M 2016 Phys. Rev. Lett. 116 115701 doi: 10.1103/PhysRevLett.116.115701

    CrossRef Google Scholar

    [16]
    Grimm J, Elçi E M, Zhou Z, Garoni T M and Deng Y J 2017 Phys. Rev. Lett. 118 115701 doi: 10.1103/PhysRevLett.118.115701

    CrossRef Google Scholar

    [17]
    Suzuki M 1977 Prog. Theor. Phys. 58 1142 doi: 10.1143/PTP.58.1142

    CrossRef Google Scholar

    [18]
    Wansleben S and Landau D P 1991 Phys. Rev. B 43 6006 doi: 10.1103/PhysRevB.43.6006

    CrossRef Google Scholar

    [19]
    Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 doi: 10.1103/RevModPhys.49.435

    CrossRef Google Scholar

    [20]
    Folk R and Moser G 2006 J. Phys. A 39 R207 doi: 10.1088/0305-4470/39/24/R01

    CrossRef Google Scholar

    [21]
    Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86 doi: 10.1103/PhysRevLett.58.86

    CrossRef Google Scholar

    [22]
    Wolff U 1989 Phys. Rev. Lett. 62 361 doi: 10.1103/PhysRevLett.62.361

    CrossRef Google Scholar

    [23]
    Gong S, Zhong F, Huang X and Fan S 2010 New J. Phys. 12 043036 doi: 10.1088/1367-2630/12/4/043036

    CrossRef Google Scholar

    [24]
    Zhong F 2011 Applications of Monte Carlo Method in Science and Engineering edited by Mordechai S Intech, Rijeka, Croatia p 469 http://www.dwz.cn/B9Pe2

    Google Scholar

    [25]
    Zhong F and Chen Q Z 2005 Phys. Rev. Lett. 95 175701 doi: 10.1103/PhysRevLett.95.175701

    CrossRef Google Scholar

    [26]
    Yin S, Qin X, Lee C and Zhong F 2012 arXiv:1207.1602 [cond-mat.stat-mech]

    Google Scholar

    [27]
    Yin S, Mai P and Zhong F 2014 Phys. Rev. B 89 094108 doi: 10.1103/PhysRevB.89.094108

    CrossRef Google Scholar

    [28]
    Huang Y, Yin S, Feng B and Zhong F 2014 Phys. Rev. B 90 134108 doi: 10.1103/PhysRevB.90.134108

    CrossRef Google Scholar

    [29]
    Liu C W, Polkovnikov A and Sandvik A W 2014 Phys. Rev. B 89 054307 doi: 10.1103/PhysRevB.89.054307

    CrossRef Google Scholar

    [30]
    Liu C W, Polkovnikov A, Sandvik A W and Young A P 2015 Phys. Rev. E 92 022128 doi: 10.1103/PhysRevE.92.022128

    CrossRef Google Scholar

    [31]
    Liu C W, Polkovnikov A and Sandvik A W 2015 Phys. Rev. Lett. 114 147203 doi: 10.1103/PhysRevLett.114.147203

    CrossRef Google Scholar

    [32]
    Feng B, Yin S and Zhong F 2016 Phys. Rev. B 94 144103 doi: 10.1103/PhysRevB.94.144103

    CrossRef Google Scholar

    [33]
    Pelissetto A and Vicari E 2016 Phys. Rev. E 93 032141 doi: 10.1103/PhysRevE.93.032141

    CrossRef Google Scholar

    [34]
    Xu N, Castelnovo C, Melko R G, Chamon C and Sandvik A W 2018 Phys. Rev. B 97 024432 doi: 10.1103/PhysRevB.97.024432

    CrossRef Google Scholar

    [35]
    Xue M, Yin S and You L 2018 Phys. Rev. A 98 013619 doi: 10.1103/PhysRevA.98.013619

    CrossRef Google Scholar

    [36]
    Cao X, Hu Q and Zhong F 2018 Phys. Rev. B 98 245124 doi: 10.1103/PhysRevB.98.245124

    CrossRef Google Scholar

    [37]
    Gerster M, Haggenmiller B, Tschirsich F, Silvi P and Montangero S 2019 Phys. Rev. B 100 024311 doi: 10.1103/PhysRevB.100.024311

    CrossRef Google Scholar

    [38]
    Li Y, Zeng Z and Zhong F 2019 Phys. Rev. E 100 020105R doi: 10.1103/PhysRevE.100.020105

    CrossRef Google Scholar

    [39]
    Mathey S and Diehl S 2020 Phys. Rev. Res. 2 013150 doi: 10.1103/PhysRevResearch.2.013150

    CrossRef Google Scholar

    [40]
    Clark L W, Feng L and Chin C 2016 Science 354 606 doi: 10.1126/science.aaf9657

    CrossRef Google Scholar

    [41]
    Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V and Lukin M D 2019 Nature 568 207 doi: 10.1038/s41586-019-1070-1

    CrossRef Google Scholar

    [42]
    Zhong F 2006 Phys. Rev. E 73 047102 doi: 10.1103/PhysRevE.73.047102

    CrossRef Google Scholar

    [43]
    Huang Y, Yin S, Hu Q and Zhong F 2016 Phys. Rev. B 93 024103 doi: 10.1103/PhysRevB.93.024103

    CrossRef Google Scholar

    [44]
    Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A M and Teller E 1953 J. Chem. Phys. 21 1087 doi: 10.1063/1.1699114

    CrossRef Google Scholar

    [45]
    Glauber R J 1963 J. Math. Phys. 4 294 doi: 10.1063/1.1703954

    CrossRef Google Scholar

    [46]
    Nightingale M P and Blote H W J 2000 Phys. Rev. B 62 1089 doi: 10.1103/PhysRevB.62.1089

    CrossRef Google Scholar

    [47]
    Ferrenberg A M and Landau D P 1991 Phys. Rev. B 44 5081 doi: 10.1103/PhysRevB.44.5081

    CrossRef Google Scholar

    [48]
    Kleinert H 1999 Phys. Rev. D 60 085001 doi: 10.1103/PhysRevD.60.085001

    CrossRef Google Scholar

    [49]
    Kikuchi M and Ito N 1993 J. Phys. Soc. Jpn. 62 3052 doi: 10.1143/JPSJ.62.3052

    CrossRef Google Scholar

    [50]
    Grassberger P 1995 Physica A 214 547 doi: 10.1016/0378-43719400285-2

    CrossRef Google Scholar

    [51]
    Landau D P 1976 Phys. Rev. B 7 2997 doi: 10.1103/PhysRevB.13.2997

    CrossRef Google Scholar

    [52]
    Yuan W and Zhong F 2020 in preparation

    Google Scholar

    [53]
    Wegner F W 1972 Phys. Rev. B 5 4529 doi: 10.1103/PhysRevB.5.4529

    CrossRef Google Scholar

  • Cited by

    Periodical cited type(7)

    1. Sieke, L.J., Harhoff, M., Schlichting, S. et al. Universal non-equilibrium scaling of cumulants across a critical point. Nuclear Physics B, 2025. DOI:10.1016/j.nuclphysb.2025.116808
    2. Zhong, F.. Complete Universal Scaling in First-Order Phase Transitions. Chinese Physics Letters, 2024, 41(10): 100502. DOI:10.1088/0256-307X/41/10/100502
    3. Zeng, S., Zhong, F. Theory of critical phenomena with long-range temporal interaction. Physica Scripta, 2023, 98(7): 075017. DOI:10.1088/1402-4896/acdcc0
    4. Zeng, S., Szeto, S.P., Zhong, F. Theory of Critical Phenomena with Memory. Chinese Physics Letters, 2022, 39(12): 120501. DOI:10.1088/0256-307X/39/12/120501
    5. Zuo, Z., Yin, S., Cao, X. et al. Scaling theory of the Kosterlitz-Thouless phase transition. Physical Review B, 2021, 104(21): 214108. DOI:10.1103/PhysRevB.104.214108
    6. Yuan, W., Zhong, F. Phases fluctuations, self-similarity breaking and anomalous scalings in driven nonequilibrium critical phenomena. Journal of Physics Condensed Matter, 2021, 33(38): 385401. DOI:10.1088/1361-648X/ac0f9d
    7. Yuan, W., Zhong, F. Phases fluctuations and anomalous finite-time scaling in an externally applied field on finite-sized lattices. Journal of Physics Condensed Matter, 2021, 33(37): 375401. DOI:10.1088/1361-648X/ac0ea8

    Other cited types(0)

Catalog

    Article views (354) PDF downloads (263) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return