[1] | Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Freeman) |
[2] | Meakin P 1998 Fractal, Scaling and Growth far from Equilibrium (Cambridge: Cambridge University) |
[3] | Fisher M E 1982 Scaling, Universality and Renormalization Group Theory, Lecture notes presented at the “Advanced Course on Critical Phenomena” (The Merensky Institute of Physics, University of Stellenbosch, South Africa) |
[4] | Ma S K 1976 Modern Theory of Critical Phenomena (Canada: W. A. Benjamin, Inc.) |
[5] | Pelissetto A and Vicari E 2002 Phys. Rep. 368 549 | Critical phenomena and renormalization-group theory
[6] | Kogut J B 1979 Rev. Mod. Phys. 51 659 | An introduction to lattice gauge theory and spin systems
[7] | Fisher M E and Barber M N 1972 Phys. Rev. Lett. 28 1516 | Scaling Theory for Finite-Size Effects in the Critical Region
[8] | Barber M N 1983 Finite-Size Scaling in Phase Transitions and Critical Phenomena edited by Domb C and Lebowitz J (New York: Academic) vol 8 |
[9] | Cardy J 1988 Finite Size Scaling (Amsterdam: North-Holland) |
[10] | Privman V 1990 Finite Size Scaling and Numerical Simulations of Statistical Systems (Singapore: World Scientific) |
[11] | Brézin E 1982 J. Phys. France 43 15 | An investigation of finite size scaling
[12] | Brézin E and Zinn-Justin J 1985 Nucl. Phys. B 257 867 | Finite size effects in phase transitions
[13] | Gasparini F M, Kimball M O, Mooney K P and Diaz-Avila M 2008 Rev. Mod. Phys. 80 1009 | Finite-size scaling of at the superfluid transition
[14] | Landau D P and Binder K 2005 A Guide to Monte Carlo Simulations in Statistical Physics 2nd edn (Cambridge: Cambridge University) |
[15] | Flores-Sola E, Berche B, Kenna R and Weigel M 2016 Phys. Rev. Lett. 116 115701 | Role of Fourier Modes in Finite-Size Scaling above the Upper Critical Dimension
[16] | Grimm J, Elçi E M, Zhou Z, Garoni T M and Deng Y J 2017 Phys. Rev. Lett. 118 115701 | Geometric Explanation of Anomalous Finite-Size Scaling in High Dimensions
[17] | Suzuki M 1977 Prog. Theor. Phys. 58 1142 | Static and Dynamic Finite-Size Scaling Theory Based on the Renormalization Group Approach
[18] | Wansleben S and Landau D P 1991 Phys. Rev. B 43 6006 | Monte Carlo investigation of critical dynamics in the three-dimensional Ising model
[19] | Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 | Theory of dynamic critical phenomena
[20] | Folk R and Moser G 2006 J. Phys. A 39 R207 | Critical dynamics: a field-theoretical approach
[21] | Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86 | Nonuniversal critical dynamics in Monte Carlo simulations
[22] | Wolff U 1989 Phys. Rev. Lett. 62 361 | Collective Monte Carlo Updating for Spin Systems
[23] | Gong S, Zhong F, Huang X and Fan S 2010 New J. Phys. 12 043036 | Finite-time scaling via linear driving
[24] | Zhong F 2011 Applications of Monte Carlo Method in Science and Engineering edited by Mordechai S (Intech, Rijeka, Croatia) p 469 http://www.dwz.cn/B9Pe2 |
[25] | Zhong F and Chen Q Z 2005 Phys. Rev. Lett. 95 175701 | Theory of the Dynamics of First-Order Phase Transitions: Unstable Fixed Points, Exponents, and Dynamical Scaling
[26] | Yin S, Qin X, Lee C and Zhong F 2012 arXiv:1207.1602 [cond-mat.stat-mech] | Finite-time scaling of dynamic quantum criticality
[27] | Yin S, Mai P and Zhong F 2014 Phys. Rev. B 89 094108 | Nonequilibrium quantum criticality in open systems: The dissipation rate as an additional indispensable scaling variable
[28] | Huang Y, Yin S, Feng B and Zhong F 2014 Phys. Rev. B 90 134108 | Kibble-Zurek mechanism and finite-time scaling
[29] | Liu C W, Polkovnikov A and Sandvik A W 2014 Phys. Rev. B 89 054307 | Dynamic scaling at classical phase transitions approached through nonequilibrium quenching
[30] | Liu C W, Polkovnikov A, Sandvik A W and Young A P 2015 Phys. Rev. E 92 022128 | Universal dynamic scaling in three-dimensional Ising spin glasses
[31] | Liu C W, Polkovnikov A and Sandvik A W 2015 Phys. Rev. Lett. 114 147203 | Quantum versus Classical Annealing: Insights from Scaling Theory and Results for Spin Glasses on 3-Regular Graphs
[32] | Feng B, Yin S and Zhong F 2016 Phys. Rev. B 94 144103 | Theory of driven nonequilibrium critical phenomena
[33] | Pelissetto A and Vicari E 2016 Phys. Rev. E 93 032141 | Off-equilibrium scaling behaviors driven by time-dependent external fields in three-dimensional vector models
[34] | Xu N, Castelnovo C, Melko R G, Chamon C and Sandvik A W 2018 Phys. Rev. B 97 024432 | Dynamic scaling of topological ordering in classical systems
[35] | Xue M, Yin S and You L 2018 Phys. Rev. A 98 013619 | Universal driven critical dynamics across a quantum phase transition in ferromagnetic spinor atomic Bose-Einstein condensates
[36] | Cao X, Hu Q and Zhong F 2018 Phys. Rev. B 98 245124 | Scaling theory of entanglement entropy in confinements near quantum critical points
[37] | Gerster M, Haggenmiller B, Tschirsich F, Silvi P and Montangero S 2019 Phys. Rev. B 100 024311 | Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble-Zurek mechanism
[38] | Li Y, Zeng Z and Zhong F 2019 Phys. Rev. E 100 020105(R) | Driving driven lattice gases to identify their universality classes
[39] | Mathey S and Diehl S 2020 Phys. Rev. Res. 2 013150 | Activating critical exponent spectra with a slow drive
[40] | Clark L W, Feng L and Chin C 2016 Science 354 606 | Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
[41] | Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V and Lukin M D 2019 Nature 568 207 | Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
[42] | Zhong F 2006 Phys. Rev. E 73 047102 | Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving
[43] | Huang Y, Yin S, Hu Q and Zhong F 2016 Phys. Rev. B 93 024103 | Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip
[44] | Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A M and Teller E 1953 J. Chem. Phys. 21 1087 | Equation of State Calculations by Fast Computing Machines
[45] | Glauber R J 1963 J. Math. Phys. 4 294 | Time‐Dependent Statistics of the Ising Model
[46] | Nightingale M P and Blote H W J 2000 Phys. Rev. B 62 1089 | Monte Carlo computation of correlation times of independent relaxation modes at criticality
[47] | Ferrenberg A M and Landau D P 1991 Phys. Rev. B 44 5081 | Critical behavior of the three-dimensional Ising model: A high-resolution Monte Carlo study
[48] | Kleinert H 1999 Phys. Rev. D 60 085001 | Critical exponents from seven-loop strong-coupling theory in three dimensions
[49] | Kikuchi M and Ito N 1993 J. Phys. Soc. Jpn. 62 3052 | Statistical Dependence Time and Its Application to Dynamical Critical Exponent
[50] | Grassberger P 1995 Physica A 214 547 | Damage spreading and critical exponents for “model A” Ising dynamics
[51] | Landau D P 1976 Phys. Rev. B 7 2997 | Finite-size behavior of the Ising square lattice
[52] | Yuan W and Zhong F 2020 (in preparation) |
[53] | Wegner F W 1972 Phys. Rev. B 5 4529 | Corrections to Scaling Laws