[1] | Rensmo H, Keis K, Henrik L, Sven A S, Solbrand A, Anders H and Sten-Eric L 1997 J. Phys. Chem. B 101 2598 | High Light-to-Energy Conversion Efficiencies for Solar Cells Based on Nanostructured ZnO Electrodes
[2] | Kumari L and Kar A K 2018 AIP Conf. Proc. 1953 030158 | AIP Conference Proceedings
[3] | Zhang F C, Zhang Z Y and Zhang W H 2009 Chin. Phys. B 18 2508 | First-principles study of the electronic and optical properties of ZnO nanowires
[4] | Tonkoshkur A S and Ivanchenko A V 2019 J. Adv. Dielectr. 9 1950023 | Electrical properties of structures based on varistor ceramics and polymer nanocomposites with carbon filler
[5] | Li Z and Yu L B 2019 Sol. Energy 184 315 | Design of Mn-doped CdxZn1-xSe@ZnO triple-shelled hollow microspheres for quantum dots sensitized solar cells with improved photovoltaic performance
[6] | Hu P S, Wu C E and Chen G L 2018 Materials 11 3 | Zno Micro/Nanostructures Grown on Sapphire Substrates Using Low-Temperature Vapor-Trapped Thermal Chemical Vapor Deposition: Structural and Optical Properties
[7] | Gedamu D, Paulowicz I, Lupan O, Wille S, Haidarschin G, Mishra Y K and Adelung R 2014 Adv. Mater. 26 1541 | Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors
[8] | Wei M, Xu C X, Qin F F, Manohari A G, Lu J F and Zhu Q X 2017 Chin. Phys. Lett. 34 078503 | Optical Field Confinement Enhanced Single ZnO Microrod UV Photodetector
[9] | Zhang Q, Li G Y, Liu X F, Qian F, Li Y, Sum T Z, Lieber C M and Xiong Q H 2014 Nat. Commun. 5 4953 | A room temperature low-threshold ultraviolet plasmonic nanolaser
[10] | Mahroug A, Amari R, Boukhari A, Deghfel B, Guerbous L and Selmi N 2018 J. Nanoelectron. Optoelectron. 13 732 | Synthesis, Structural, Morphological, Electronic, Optical and Luminescence Properties of Pure and Manganese-Doped Zinc Oxide Nanostructured Thin Films: Effect of Doping
[11] | Huang J D and Jiang J Y 2019 RSC Adv. 9 29967 | Barrier thickness dependence of Mg x Zn 1−x O/ZnO quantum well (QW) on the performance of a p-NiO/QW/n-ZnO photodiode
[12] | Tsukazaki A, Ohtomo A, Onuma T, Ohtani M and Kawasaki M 2004 Nat. Mater. 4 42 | Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO
[13] | Ganesh V, Yahia I S, Alfaify S and Shkir M 2017 J. Phys. Chem. Solids 100 115 | Sn-doped ZnO nanocrystalline thin films with enhanced linear and nonlinear optical properties for optoelectronic applications
[14] | Al-Hardan N H, Rashid M M M, Aziz A A and Ahmed N M 2019 J. Mater. Sci.: Mater. Electron. 30 19639 | Low power consumption UV sensor based on n-ZnO/p-Si junctions
[15] | Zheng H, Chen Z, Zhu H, Tang Z and Shan X 2020 Chin. Phys. B 29 097302 | Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
[16] | Weston L, Cui X Y, Delley B and Stampfl C 2012 Phys. Rev. B 86 205322 | Band offsets and polarization effects in wurtzite ZnO/Mg Zn O superlattices from first principles
[17] | Wang Y C, Tian F B, Li D, Duan D F, Xie H, Liu B B, Zhou Q and Cui T 2019 J. Alloys Compd. 788 905 | First principle studies of ZnO1-xSx alloys under high pressure
[18] | Long D B, Li M K, Luo M H, Zhu J K, Yang H, Huang Z B, Ahuja R and He Y B 2017 Mater. Res. Express 4 055901 | Theoretical investigation on thermodynamic properties of ZnO 1− x Te x alloys
[19] | Maznichenko I V, Ernst A, Bouhassoune M, Henk J, Daene M, Lueders M, Bruno P, Herget W, Mertig I, Szotek Z and Temmerman W M 2009 Phys. Rev. B 80 144101 | Structural phase transitions and fundamental band gaps of alloys from first principles
[20] | Shimada K, Takahashi N, Nakagawa Y, Hiramatsu T and Kato H 2013 Phys. Rev. B 88 075203 | Nonlinear characteristics of structural properties and spontaneous polarization in wurtzite Mg Zn O: A first-principles study
[21] | Wu C C, Wuu D S, Lin P R, Chen T N, Horng R H, Ou S L, Tu Y L, Wei C C and Feng Z C 2011 Thin Solid Films 519 1966 | Characterization of MgxZn1−xO thin films grown on sapphire substrates by metalorganic chemical vapor deposition
[22] | Richet P, Mao H K and Bell P M 1988 J. Geophys. Res. 93 15279 | Static compression and equation of state of CaO to 1.35 Mbar
[23] | Solozhenko V L, Baranov A N and Tukevich A N 2006 Solid State Commun. 138 534 | High-pressure formation of MgxZn1−xO solid solutions with rock salt structure
[24] | Sanati M, Hart G L W and Zunger A 2003 Phys. Rev. B 68 155210 | Ordering tendencies in octahedral MgO-ZnO alloys
[25] | Tian F, Duan D, Li D, Chen C, Sha X, Zhao Z and Cui T 2014 Sci. Rep. 4 5759 | Miscibility and ordered structures of MgO-ZnO alloys under high pressure
[26] | Sha X J, Tian F B, Li D, Duan D F, Chu B H, Liu Y X, Liu B B and Cui T 2015 Sci. Rep. 5 11003 | Ab initio investigation of CaO-ZnO alloys under high pressure
[27] | Jaffe J E, Synder J A, Lin Z and Hess A C 2000 Phys. Rev. B 62 1660 | LDA and GGA calculations for high-pressure phase transitions in ZnO and MgO
[28] | Mori Y, Niiya N, Ukegawa K, Mizuno T, Takarabe K and Ruoff A L 2004 Phys. Status Solidi B 241 3198 | High-pressure X-ray structural study of BeO and ZnO to 200 GPa
[29] | Duan Y, Shi H, Qin L 2008 Phys. Lett. A 372 2930 | Elasticity, band structure, and piezoelectricity of BexZn1−xO alloys
[30] | Ryu Y R, Lee T S, Lubguban J A, Corman A B and White H W 2006 Appl. Phys. Lett. 88 052103 | Wide-band gap oxide alloy: BeZnO
[31] | Lakel S, Elhamra F, Almi K and Meradji H 2015 Mater. Sci. Semicond. Process. 40 803 | First-principles investigation of electronic and optical properties and thermodynamic stability of Zn1−Be O semiconductor alloy
[32] | Li M K, Luo M H, Zhu J K, Long D B, Miao L S and He Y B 2017 J. Appl. Phys. 121 205101 | First-principles calculations of the phase equilibrium of Be x Zn 1− x O alloys
[33] | Elhamra F, Lakel S, Ibrir M, Almi K and Meradji H 2015 Mod. Phys. Lett. B 29 1550140 | Theoretical investigation of elastic and phononic properties of Zn1−xBexO alloys
[34] | Elhamra F, Lakel S and Meradji H 2016 Optik 127 1754 | Pressure effect on the structural, electronic, optical and elastic properties of Zn0.75Be0.25O from first-principles calculations
[35] | Dong L and Alpay S P 2011 Phys. Rev. B 84 035315 | Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric properties of ZnO-BeO solid solutions
[36] | Paul F and M 2002 Nat. Mater. 1 19 | New materials from high-pressure experiments
[37] | Duan D F, Huang X L, Tian F B, Yu H Y, Liu Y X, Ma Y M, Liu B B and Cui T 2015 Phys. Rev. B 91 180502 | Pressure-induced decomposition of solid hydrogen sulfide
[38] | Oganov A R, Lyakhov A O and Valle M 2011 Acc. Chem. Res. 44 227 | How Evolutionary Crystal Structure Prediction Works—and Why
[39] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[40] | Kawatani T, Shimizu H 1998 Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No. 98EX170), Brisbane, Queensland, Australia, 20 August 1998, vol 2 pp 1301–1305 | Handwritten Kanji recognition with the LDA method
[41] | Heyd J, Scuseria G E and Ernzerhof M 2003 J. Chem. Phys. 118 8207 | Hybrid functionals based on a screened Coulomb potential
[42] | Jia W, Cao Z, Wang L, Fu J, Chi X, Gao W and Wang L W 2013 Comput. Phys. Commun. 184 9 | The analysis of a plane wave pseudopotential density functional theory code on a GPU machine
[43] | Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W and Wang L W 2013 J. Comput. Phys. 251 102 | Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines
[44] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[45] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[46] | Chadi D J 1977 Phys. Rev. B 16 1746 | Special points for Brillouin-zone integrations
[47] | Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures